Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Application lipschitzienneEn analyse mathématique, une application lipschitzienne (du nom de Rudolf Lipschitz) est une application possédant une certaine propriété de régularité qui est plus forte que la continuité. Intuitivement, c'est une fonction qui est limitée dans sa manière d'évoluer. Tout segment reliant deux points du graphe d'une telle fonction aura une pente inférieure, en valeur absolue, à une constante appelée constante de Lipschitz. Les fonctions lipschitziennes sont un cas particulier de fonctions höldériennes.
Module de continuitéEn analyse mathématique, un module de continuité est une fonction ω : [0, ∞] → [0, ∞] utilisée pour mesurer quantitativement la continuité uniforme des fonctions. Ainsi, une fonction f : I → R admet ω pour module de continuité si et seulement si Puisqu'on impose aux modules de continuité de s’annuler et d'être continus en 0, une fonction est uniformément continue si et seulement si elle admet un module de continuité. De plus, le fait qu'une famille de fonctions admette un module de continuité commun est identique à la notion d'équicontinuité.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Dependent and independent variablesDependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question. In this sense, some common independent variables are time, space, density, mass, fluid flow rate, and previous values of some observed value of interest (e.
Séparation des variablesEn mathématiques, la séparation des variables constitue l'une des méthodes de résolution des équations différentielles partielles et ordinaires, lorsque l'algèbre permet de réécrire l'équation de sorte que chacune des deux variables apparaisse dans un membre distinct de l'équation. Supposons qu'une équation différentielle puisse être écrite de la forme suivante et pour tout x : que l'on peut écrire plus simplement en identifiant : Tant que h(y) ≠ 0, on peut réécrire les termes de l'équation pour obtenir : séparant donc les variables x et y.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Errors-in-variables modelsIn statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses. In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to inconsistent estimates, meaning that the parameter estimates do not tend to the true values even in very large samples.
Classe socialeLa notion de classe sociale désigne, dans son sens le plus large, un groupe social de grande dimension (ce qui le distingue des simples professions) pris dans une hiérarchie sociale de fait et non de droit (ce qui le distingue des ordres et des castes). Si elle constitue une pièce centrale des critiques anarchiste et marxiste du capitalisme ayant tous deux pour objectif d'instaurer une société sans classes, elle ne leur est pas propre : cette notion fait même partie du lexique sociologique courant.