Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Langue V2Une langue à verbe second, ou en abrégé langue V2, est, en typologie syntaxique, une langue dont les propositions principales ont toujours un verbe comme deuxième constituant. Cette condition n'est pas nécessaire pour les autres types de propositions. L'effet V2 est démontré clairement dans les phrases suivantes en néerlandais : Ik las gisteren dit boek je lus hier ce livre (J'ai lu hier ce livre) Gisteren las ik dit boek hier lus je ce livre (Hier j'ai lu ce livre) Dit boek las ik gisteren ce livre lus je hier (Ce livre, je l'ai lu hier) On peut avoir l'impression que le verbe est en troisième position dans la dernière phrase, mais il en est en fait le deuxième constituant, le premier étant « dit boek » (ce livre).
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Ordre des motsEn syntaxe, l’ordre des mots se réfère premièrement à la succession de ces unités dans le syntagme et des syntagmes dans la phrase simple, ainsi que dans la proposition faisant partie d’une phrase complexe. Dans un sens plus large, il concerne aussi l’ordre des propositions dans la phrase complexe. Certains auteurs mentionnent que, s’agissant de mots à fonction syntaxique, la question de leur ordre regarde non seulement la façon dont ils se succèdent, mais aussi la position plus ou moins éloignée des uns par rapport aux autres, l’ordre des mots ayant par conséquent une composante succession et une composante proximité/éloignement.
Spectroscopie par transformée de FourierLa spectroscopie par transformée de Fourier est une technique de mesure par laquelle les spectres sont collectés sur la base de mesures de la cohérence d'une source radiative, utilisant le domaine temporel ou le domaine spatial des rayonnements électromagnétiques ou autre. Elle peut être appliquée à plusieurs types de spectroscopie dont la spectroscopie optique, la spectroscopie infrarouge (FTIR, FT-NIRS), la résonance magnétique nucléaire (RMN) et l'imagerie spectroscopique à résonance magnétique (MRSI), la spectrométrie de masse et la spectroscopie par résonance paramagnétique électronique.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Sous-espace vectoriel engendréDans un espace vectoriel E, le sous-espace vectoriel engendré par une partie A de E est le plus petit sous-espace vectoriel de E contenant A. C'est aussi l'ensemble des combinaisons linéaires de vecteurs de A. Le sous-espace vectoriel engendré par une famille de vecteurs est le plus petit sous-espace contenant tous les vecteurs de cette famille. Une famille de vecteurs ou une partie est dite génératrice de E si le sous-espace qu'elle engendre est l'espace entier E.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.