Polynôme caractéristiqueEn mathématiques, et plus particulièrement en algèbre linéaire, à toute matrice carrée à coefficients dans un anneau commutatif ou à tout endomorphisme d'un espace vectoriel de dimension finie est associé un polynôme appelé polynôme caractéristique. Il renferme d'importantes informations sur la matrice ou sur l'endomorphisme, comme ses valeurs propres, son déterminant et sa trace. Le théorème de Cayley-Hamilton assure que toute matrice carrée annule son polynôme caractéristique.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Produit matriciel de Hadamardvignette|Illustration du produit de Hadamard: il s'applique à deux matrices de mêmes dimensions et la matrice en resultant a les mêmes dimensions également. En mathématiques, le produit matriciel de Hadamard, nommé d'après le mathématicien français Jacques Hadamard et parfois désigné produit de Schur, est une opération binaire qui pour deux matrices de mêmes dimensions, associe une autre matrice, de même dimension, et où chaque coefficient est le produit terme à terme des deux matrices.
Système de positionnement en intérieurUn système de positionnement en intérieur ou système de géolocalisation en intérieur permet de trouver la position d'objets ou de personnes dans un espace interne à une structure (bâtiments, maisons...). La localisation joue un rôle essentiel dans la vie de tous les jours. Alors que la localisation basée sur les GPS est populaire, sa prolifération dans les environnements intérieurs est limitée. Cela est dû à la mauvaise pénétration des signaux GPS à l’intérieur des bâtiments et à l'absence fréquente de systèmes de localisation intérieure.
Structure quaternairevignette|Structure quaternaire de l'hémoglobine humaine. Deux sous-unités α et deux sous-unités β forment le tétramère fonctionnel de l'hémoglobine. Elles sont arrangées avec un enchaînement de type αβαβ. La structure quaternaire d'une protéine multimérique est la manière dont sont agencées les différentes chaînes protéiques, ou sous-unités, à l'état natif les unes par rapport aux autres. Ce qualificatif ne s'applique qu'aux protéines multimériques, c'est-à-dire ne contenant pas qu'une seule sous unité.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Structure tertiaireEn biochimie, la structure tertiaire ou tridimensionnelle est le repliement dans l'espace d'une chaîne polypeptidique. Ce repliement donne sa fonctionnalité à la protéine, notamment par la formation du site actif des enzymes. . La structure tertiaire correspond au degré d'organisation supérieur aux hélices α ou aux feuillets β. Ces protéines possèdent des structures secondaires associées le long de la chaîne polypeptidique. Le repliement et la stabilisation de protéines à structure tertiaire dépend de plusieurs types de liaisons faibles qui stabilisent l'édifice moléculaire.
Structure secondairethumb|200px|Schéma de la structure tridimensionnelle de la protéine myoglobine. Cette structure contient de hélices α mais pas de feuillets β. Cette protéine est la première dont la structure a été résolue par cristallographie en 1958, par Max Perutz et John Kendrew, ce qui leur a valu l'attribution du prix Nobel de chimie en 1962. En biochimie et en biologie structurale, la structure secondaire se rapporte uniquement à la description de la structure tridimensionnelle localement adoptée par certains segments de molécules biologiques (molécules définies comme étant des biopolymères, comme c’est le cas pour les protéines et les acides nucléiques (ADN/ARN)).
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Paire de matrices commutantesEn mathématiques, une paire de matrices commutantes est une paire {A, B} de matrices carrées à coefficients dans un corps qui commutent, c'est-à-dire que AB = BA. L'étude des paires de matrices commutantes a des aspects tout à fait élémentaires et d'autres qui font l'objet de recherches en cours. L'énoncé de certains problèmes étudiés est assez élémentaire pour être présenté au niveau de la première année d'études supérieures. En voici un exemple : Une matrice nilpotente est une matrice dont une puissance est nulle.