Polytope abstraitEn mathématiques, et plus particulièrement en géométrie discrète, un polytope abstrait est un ensemble partiellement ordonné dont l'ordre reflète les propriétés combinatoires d'un polytope (au sens traditionnel, généralisant les polygones et les polyèdres à un nombre de dimensions quelconque), mais pas les aspects géométriques usuels, tels que les angles ou les distances. On dit qu'un polytope (géométrique) est une réalisation dans un espace à n dimensions (le plus souvent euclidien) du polytope abstrait correspondant.
Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Variété projectiveEn géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Diagonalevignette|Le segment [D'B'] est une diagonale du carré A'B'C'D'.[D'B'] et [A'C] sont tous deux des diagonales du cube ci-dessus. On appelle diagonale d'un polygone tout segment reliant deux sommets non consécutifs (non reliés par un côté). Un polygone à n côtés possède donc diagonales. Un quadrilatère est un parallélogramme si, et seulement si, ses diagonales se croisent en leur milieu. On appelle diagonale de l'espace une diagonale d'un polytope, diagonale de l'espace principale une diagonale principale d'un polytope, diagonale de l'espace brisée une diagonale brisée d'un hypercube.
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Complex algebraic varietyIn algebraic geometry, a complex algebraic variety is an algebraic variety (in the scheme sense or otherwise) over the field of complex numbers. Chow's theorem Chow's theorem states that a projective analytic variety; i.e., a closed analytic subvariety of the complex projective space is an algebraic variety; it is usually simply referred to as a projective variety. Not every complex analytic variety is algebraic, though.
Complex analytic varietyIn mathematics, and in particular differential geometry and complex geometry, a complex analytic variety or complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic varieties are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions. Denote the constant sheaf on a topological space with value by .
Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.