Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
CoefficientUn coefficient est un facteur constant, exprimé par un nombre ou par un symbole qui le représente, qui s’applique à une grandeur variable (grandeur physique ou variable mathématique). En physique par exemple, quand la vitesse d’un solide mobile est constante, la distance parcourue est proportionnelle à la durée du parcours, la vitesse étant le coefficient de proportionnalité à appliquer à une durée donnée pour obtenir la distance parcourue pendant ce temps.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Bessel's correctionIn statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance. It also partially corrects the bias in the estimation of the population standard deviation. However, the correction often increases the mean squared error in these estimations. This technique is named after Friedrich Bessel.
Coefficient de déterminationvignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Moyenne géométriqueEn mathématiques, la moyenne géométrique est un type de moyenne. La moyenne géométrique de deux nombres positifs a et b est le nombre positif c tel que : Cette égalité étant une proportion, ceci justifie l'autre appellation « moyenne proportionnelle » de la moyenne géométrique. vignette|La moyenne géométrique des côtés d'un rectangle est donnée par un carré de même aire. Elle est construite par un cercle tangent aux deux cercles définis par les côtés du rectangle et les séparant.
Moyenne arithmétiqueEn mathématiques, la moyenne arithmétique d'une liste de nombres réels est la somme des valeurs divisée par le nombre de valeurs. Il s’agit de la moyenne au sens usuel du terme, sans coefficients, l’adjectif « arithmétique » la distinguant d’autres moyennes mathématiques moins courantes. La moyenne peut être notée à l’aide de son initiale m, M ou avec la lettre grecque correspondante μ. Lorsque la moyenne est calculée sur une liste notée (x, x, ... , x), on la note habituellement à l’aide du diacritique macron, caractère unicode u+0304.
Variance (mathématiques)vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).