Intégrale de DirichletL'intégrale de Dirichlet est l'intégrale de la fonction sinus cardinal sur la demi-droite des réels positifs Il s'agit d'une intégrale impropre semi-convergente, c'est-à-dire qu'elle n'est pas absolument convergente () mais existe et est finie. On considère la fonctionEn 0, sa limite à droite vaut 1, donc f est prolongeable en une application continue sur [0, +∞[, si bien qu'elle est intégrable sur [0, a] pour tout a > 0.Mais elle n'est pas intégrable en +∞, c'est-à-dire que.
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Intégrale elliptiqueLes intégrales elliptiques interviennent dans de nombreux problèmes de physique mathématique : comme par exemple, le calcul de la période d'un pendule aux grandes amplitudes et plus généralement les formes d'équilibre ellipsoïdales des corps en rotation autour d'un axe (planètes, étoiles, goutte d'eau, noyau atomique,...). Une intégrale elliptique est une intégrale de la forme où est une fonction rationnelle à deux variables, est une fonction polynomiale de degré 3 ou 4 avec des racines simples et est une constante.
Intégrale de StratonovichEn calcul stochastique, l'intégrale de Stratonovich (aussi intégrale de Fisk-Stratonovich) est un type d'intégrale stochastique. Contrairement à l'intégrale d'Itô, où seul le point final gauche de l'intervalle de décomposition est nécessaire pour la construction dans l'intégrale de Stratonovich, on utilise la moyenne arithmétique des extrémités gauche et droite L'avantage de l'intégrale de Stratonovich sur l'intégrale d'Itô est que la formule d'Itô n'a que des différentiels du premier ordre.
Intégrale trigonométriqueEn mathématiques, les intégrales trigonométriques sont une famille d'intégrales basées sur les fonctions trigonométriques. Sinus intégral Il existe deux fonctions sinus intégrales : On peut remarquer que l'intégrande sin(t)/t est la fonction sinus cardinal, et la fonction de Bessel sphérique d'ordre 0. Puisque sinc est une fonction entière paire (holomorphe sur tout le plan complexe), Si est entière, impaire, et l'intégrale dans sa définition peut être calculée le long de tout chemin reliant les extrémités.
Intégrale de FresnelL'intégrale de Fresnel est une intégrale impropre introduite par le physicien français Augustin Fresnel. Ces égalités sont équivalentes à l'expression de l'intégrale de Fresnel complexe (par identification des parties réelle et imaginaire dans un sens et par combinaison linéaire dans l'autre) : Le calcul explicite montrera que l'intégrale de Fresnel converge, mais on peut s'en assurer plus simplement : par le changement de variable s = t, la convergence de équivaut à celle de ; d'après la règle d'Abel, pour tout λ > 0, l'intégrale converge.
Intégrale d'Itōvignette|Tracé d'une trajectoire échantillon d'un processus de Wiener, ou mouvement brownien, B, ainsi que son intégrale d'Itô par rapport à lui-même. L'intégration par parties ou le lemme d'Itô montre que l'intégrale est égale à (B2 - t)/2. L'intégrale d'Itô, appelée en l'honneur du mathématicien Kiyoshi Itô, est un des outils fondamentaux du calcul stochastique. Elle a d'importantes applications en mathématique financière et pour la résolution des équations différentielles stochastiques.
Convex geometryIn mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, game theory, etc. According to the Mathematics Subject Classification MSC2010, the mathematical discipline Convex and Discrete Geometry includes three major branches: general convexity polytopes and polyhedra discrete geometry (though only portions of the latter two are included in convex geometry).
Topologie faibleEn mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera pour et forme linéaire sur . Soient E un espace vectoriel normé (réel ou complexe), ou plus généralement un espace vectoriel topologique et E' son dual topologique, c’est-à-dire l'ensemble des formes linéaires continues sur E.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.