Écoulement laminaireEn mécanique des fluides, l'écoulement laminaire est le mode d'écoulement d'un fluide où l'ensemble du fluide s'écoule plus ou moins dans la même direction, sans que les différences locales se contrarient (par opposition au régime turbulent, fait de tourbillons qui se contrarient mutuellement). L'écoulement laminaire est généralement celui qui est recherché lorsqu'on veut faire circuler un fluide dans un tuyau (car il crée moins de pertes de charge), ou faire voler un avion (car il est plus stable, et prévisible par les équations).
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.
Contrainte de cisaillementvignette|Une force est appliquée à la partie supérieure d'un carré, dont la base est bloquée. La déformation en résultant transforme le carré en parallélogramme. Une contrainte de cisaillement τ (lettre grecque « tau ») est une contrainte mécanique appliquée parallèlement à la section transversale d'un élément allongé, par opposition aux contraintes normales qui sont appliquées perpendiculairement à cette surface (donc longitudinalement, c.-à-d. selon l'axe principal de la pièce). C'est le rapport d'une force à une surface.
Théorie des écoulements à potentiel de vitessevignette|Diagrammes plan d'écoulement des fluides autour d'un cylindre et d'un profil d'aile En mécanique des fluides, la théorie des écoulements à potentiel de vitesse est une théorie des écoulements de fluide où la viscosité est négligée. Elle est très employée en hydrodynamique. La théorie se propose de résoudre les équations de Navier-Stokes dans les conditions suivantes : l'écoulement est stationnaire le fluide n'est pas visqueux il n'y a pas d'action externe (flux de chaleur, électromagnétisme, gravité .
Couche limitevignette|redresse=2|Couches limites laminaires et turbulentes d'un écoulement sur une plaque plane (avec profil des vitesses moyennes). La couche limite est la zone d'interface entre un corps et le fluide environnant lors d'un mouvement relatif entre les deux. Elle est la conséquence de la viscosité du fluide et est un élément important en mécanique des fluides (aérodynamique, hydrodynamique), en météorologie, en océanographie vignette|Profil de vitesses dans une couche limite.
Écoulement de StokesUn écoulement de Stokes (ou écoulement rampant) caractérise un fluide visqueux qui s'écoule lentement en un lieu étroit ou autour d'un petit objet, dont les effets visqueux dominent alors sur les effets inertiels. On parle parfois de fluide de Stokes par opposition à fluide parfait. Il est en effet régi par une version simplifiée de l'équation de Navier-Stokes, léquation de Stokes, dans laquelle les termes inertiels sont absents.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.