Corps finiEn mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Ring of symmetric functionsIn algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group.
Théorème de la progression arithmétiqueEn mathématiques, et plus précisément en théorie des nombres, le théorème de la progression arithmétique, s'énonce de la façon suivante : Ce théorème est une généralisation du théorème d'Euclide sur les nombres premiers. Sa première démonstration, due au mathématicien allemand Gustav Lejeune Dirichlet en 1838, fait appel aux résultats de l'arithmétique modulaire et à ceux de la théorie analytique des nombres. La première démonstration « élémentaire » est due à Atle Selberg en 1949.
Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.
Symmetric differenceIn mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is . The symmetric difference of the sets A and B is commonly denoted by or The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse.
Matrice symétriquevignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).
Groupe de LieEn mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.
Complete homogeneous symmetric polynomialIn mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials. The complete homogeneous symmetric polynomial of degree k in n variables X1, ..., Xn, written hk for k = 0, 1, 2, ..., is the sum of all monomials of total degree k in the variables.