Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi de ParetoEn théorie des probabilités, la loi de Pareto, d'après Vilfredo Pareto, est un type particulier de loi de puissance qui a des applications en sciences physiques et sociales. Elle permet notamment de donner une base théorique au « principe des 80-20 », aussi appelé principe de Pareto. Soit la variable aléatoire X qui suit une loi de Pareto de paramètres (x,k), avec k un réel positif, alors la loi est caractérisée par : Les lois de Pareto sont des lois continues.
Loi stableLa loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Modulation du signalEn télécommunications, le signal transportant une information doit passer par un moyen de transmission entre un émetteur et un récepteur. Le signal est rarement adapté à la transmission directe par le canal de communication choisi, hertzien, filaire, ou optique. La modulation peut être définie comme le processus par lequel le signal est transformé de sa forme originale en une forme adaptée au canal de transmission, par exemple en faisant varier les paramètres d'amplitude et d'argument (phase/fréquence) d'une onde sinusoïdale appelée porteuse.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Courant continuLe courant continu ou CC (DC pour direct current en anglais) est un courant électrique dont l'intensité est indépendante du temps (constante). C'est, par exemple, le type de courant délivré par les piles ou les accumulateurs. Par extension, on nomme courant continu un courant périodique dont l'intensité est toujours assez proche de sa valeur moyenne ou dont la composante continue (sa valeur moyenne) est d'importance primordiale, ou encore un courant électrique qui circule continuellement (ou très majoritairement) dans le même sens (dit aussi unidirectionnel).
Phase-shift keyingLe phase-shift keying (ou PSK, soit « modulation par changement de phase ») désigne une famille de formes de modulations numériques qui ont toutes pour principe de véhiculer de l'information binaire via la phase d'un signal de référence (porteuse), et exclusivement par ce biais. Comme pour toute technique de modulation numérique, la phase en question ne peut prendre qu'un nombre fini de valeurs. Chacune de ces valeurs représente un unique nombre binaire, dont la taille (et donc la quantité d'information transmise) dépend du nombre de valeurs possibles pour la phase.
Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
OnduleurUn onduleur est un dispositif d'électronique de puissance permettant de générer des tensions et des courants alternatifs à partir d'une source d'énergie électrique continue. Son fonctionnement est à dissocier des autres convertisseurs comme les convertisseurs AC/AC, les redresseurs (AC/DC) ou encore les convertisseurs DC/DC. Cependant un onduleur peut être associé à d'autres convertisseurs pour en changer la fonction. Le nom anglais de l'onduleur, « inverter », vient du fait qu'historiquement l'onduleur avait la fonction inverse d'un redresseur.