Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Modèle de langageEn traitement automatique des langues, un modèle de langage ou modèle linguistique est un modèle statistique de la distribution de symboles distincts (lettres, phonèmes, mots) dans une langue naturelle. Un modèle de langage peut par exemple prédire le mot suivant dans une séquence de mots. Un modèle de langage n-gramme est un modèle de langage qui modélise des séquences de mots comme un processus de Markov. Il utilise l'hypothèse simplificatrice selon laquelle la probabilité du mot suivant dans une séquence ne dépend que d'une fenêtre de taille fixe de mots précédents.
Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
Identification de systèmeL'identification de système ou identification paramétrique est une technique de l'automatique consistant à obtenir un modèle mathématique d'un système à partir de mesures. L'identification consiste à appliquer ou observer des signaux de perturbation à l'entrée d'un système (par exemple, pour un système électronique, ceux-ci peuvent être de type binaire aléatoire ou pseudo-aléatoire, galois, sinus à fréquences multiples...) et en analyser la sortie dans le but d'obtenir un modèle purement mathématique.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Tourbillon de turbulencevignette|upright=0.75|Allées de Karman autour de Madère et des îles Canaries vignette|upright=0.75|Les courants océaniques de Oya shivo et Kuroshio se rencontrent et donnent un tourbillon de turbulence visible par la concentration du phytoplancton dans le vortex. Un tourbillon de turbulence est un élément d'une masse fluide turbulente qui a une certaine individualité et une certaine vie qui lui sont propres. Il peut être causé par un obstacle dans le flot créant un contre-courant, par une différence de densité entre deux sections du fluide ou par la rencontre de deux fluides.
Lois de Fickvignette|250px|La diffusion moléculaire d'un point de vue microscopique et macroscopique. Les molécules solubles sur le côté gauche de la barrière (ligne violette) diffusent pour remplir le volume complet. En haut : une seule molécule se déplace aléatoirement. Au milieu : Le soluté remplit le volume disponible par marche aléatoire. En bas : au niveau macroscopique, le côté aléatoire devient indétectable. Le soluté se déplace des zones où les concentrations sont élevées vers les zones à concentrations plus faibles.
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Plasma cosmologyPlasma cosmology is a non-standard cosmology whose central postulate is that the dynamics of ionized gases and plasmas play important, if not dominant, roles in the physics of the universe at interstellar and intergalactic scales. In contrast, the current observations and models of cosmologists and astrophysicists explain the formation, development, and evolution of large-scale structures as dominated by gravity (including its formulation in Albert Einstein's general theory of relativity).
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).