Inférence bayésienne en phylogénieL'inférence bayésienne de la phylogénie est la combinaison des informations dans l'a priori et dans la vraisemblance des données pour créer la soi-disant probabilité postérieure des arbres, qui est la probabilité que l'arbre soit correct compte tenu des données, de l'a priori et du modèle de vraisemblance. L'inférence bayésienne a été introduite dans la phylogénétique moléculaire dans les années 1990 par trois groupes indépendants : Bruce Rannala et Ziheng Yang à Berkeley, Bob Mau à Madison, et Shuying Li à l'Université de l'Iowa, les deux derniers étant doctorants à l'époque.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
PhylogénieLa phylogenèse ou phylogénie, du grec ancien , « tribu, famille, clan » et , « création », est l'étude des liens de parenté (relations phylogénétiques ou phylétiques) entre les êtres vivants et ceux qui ont disparu : entre individus (niveau généalogique ; seule une généalogie individuelle peut répondre à la question « qui est l'ancêtre de qui ? », tandis qu'une phylogénie de groupe peut répondre à la question « qui est le plus proche parent de qui ? ») ; entre populations (à l'intérieur d'une même espèce qu
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Invariant measureIn mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Équation différentielle à retardEn mathématiques, les équations différentielles à retard (EDR) sont un type d'équation différentielle dans laquelle la dérivée de la fonction inconnue à un certain instant est donnée en fonction des valeurs de la fonction aux instants précédents. Les EDR sont également appelés des systèmes à retard, systèmes avec effet secondaire ou temps mort, systèmes héréditaires, équations à argument déviant, ou équations aux différences différentielles .
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.