Processus gaussienEn théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.
Musique classiquethumb|250px|Une vingtaine de compositeurs de musique classique, parmi les plus importants couvrant la période du .(De gauche à droite, de haut en bas : — Antonio Vivaldi, Jean-Sébastien Bach, Georg Friedrich Haendel, Wolfgang Amadeus Mozart, Ludwig van Beethoven — Gioachino Rossini, Felix Mendelssohn, Frédéric Chopin, Richard Wagner, Giuseppe Verdi — Johann Strauss II, Johannes Brahms, Georges Bizet, Piotr Ilitch Tchaïkovski, Antonín Dvořák — Edvard Grieg, Edward Elgar, Sergueï Rachmaninov, George Gershwin, Aram Khatchatourian.
Musique de la période classiqueLa musique de la période classique recouvre par convention la musique écrite entre la mort de Johann Sebastian Bach soit 1750 et le début de la période romantique, soit les années 1820. Par extension, on appelle « musique classique » (ou grande musique) toute la musique savante européenne, de la musique du Moyen Âge à la musique contemporaine.
Processus de WienerEn mathématiques, le processus de Wiener est un processus stochastique à temps continu nommé ainsi en l'honneur de Norbert Wiener. Il permet de modéliser le mouvement brownien. C'est l'un des processus de Lévy les mieux connus. Il est souvent utilisé en mathématique appliquée, en économie et en physique. Le processus de Wiener est défini comme un mouvement brownien standard monodimensionnel, démarrant à l'origine, et à valeurs réelles.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Espace-tempsEn physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre. En réalité, ce sont deux versions (vues sous un angle différent) d'une même entité. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du dans le domaine de la physique, mais aussi pour la philosophie. Elle est apparue avec la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski ; son importance a été renforcée par la relativité générale.
Unit rootIn probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If the other roots of the characteristic equation lie inside the unit circle—that is, have a modulus (absolute value) less than one—then the first difference of the process will be stationary; otherwise, the process will need to be differenced multiple times to become stationary.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Observatoire d'ondes gravitationnellesEn astronomie, un observatoire d'ondes gravitationnelles (on parle aussi de détecteur d'ondes gravitationnelles) est un système destiné à détecter et mesurer les ondes gravitationnelles. Un moyen relativement simple d'observer ces ondes est connu sous le nom de barre de Weber : sous l'effet d'une onde gravitationnelle, l'espace-temps se déforme très légèrement. Ainsi, un objet est également déformé - on peut alors déduire l'intensité et la provenance de l'onde.