Corrélation croiséeLa corrélation croisée est parfois utilisée en statistique pour désigner la covariance des vecteurs aléatoires X et Y, afin de distinguer ce concept de la « covariance » d'un vecteur aléatoire, laquelle est comprise comme étant la matrice de covariance des coordonnées du vecteur. En traitement du signal, la corrélation croisée (aussi appelée covariance croisée) est la mesure de la similitude entre deux signaux.
ARMAEn statistique, les modèles ARMA (modèles autorégressifs et moyenne mobile), ou aussi modèle de Box-Jenkins, sont les principaux modèles de séries temporelles. Étant donné une série temporelle , le modèle ARMA est un outil pour comprendre et prédire, éventuellement, les valeurs futures de cette série. Le modèle est composé de deux parties : une part autorégressive (AR) et une part moyenne-mobile (MA). Le modèle est généralement noté ARMA(,), où est l'ordre de la partie AR et l'ordre de la partie MA.
Borel functional calculusIn functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential The 'scope' here means the kind of function of an operator which is allowed.
Évaporation des trous noirsL'évaporation des trous noirs, qui se traduit par le rayonnement de Hawking (dit aussi de Bekenstein-Hawking), est le phénomène selon lequel un observateur regardant un trou noir peut détecter un infime rayonnement de corps noir, évaporation des trous noirs, émanant de la zone proche de son horizon des événements. Il a été prédit par Stephen Hawking en 1975 et est considéré comme l'une de ses plus importantes réalisations.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Philosophie de l'espace et du tempsLa philosophie de l'espace et du temps est une branche de la philosophie qui traite des problèmes liés aux caractères épistémologiques et ontologiques de l'espace et du temps. Faisant droit à toutes les exigences de la rationalité naissante, la philosophie grecque est . En quête en effet d’identités et de permanences susceptibles de fournir à la pensée les repères fixes et stables dont celle-ci a besoin, elle parie sur l’Être contre le devenir. C’est la position très tôt affirmée par Parménide d’Élée : (La voie de la vérité, § 8).
Sphère d'homologieEn topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.
John von NeumannJohn von Neumann (János Lajos Neumann) (, János Lajos Neumann en hongrois), né le à Budapest et mort le à Washington, est un mathématicien et physicien américano-hongrois. Il a apporté d'importantes contributions en mécanique quantique, en analyse fonctionnelle, en logique mathématique, en informatique théorique, en sciences économiques et dans beaucoup d'autres domaines des mathématiques et de la physique. Il a de plus participé aux programmes militaires américains.
Mesure spectraleEn mathématiques, plus précisément en analyse fonctionnelle, une mesure spectrale est une application définie sur une tribu à valeurs dans l'espace des projections orthogonales d'un espace hilbertien et vérifiant des axiomes semblables à ceux qui définissent les mesures positives. Les mesures spectrales sont utilisées pour exprimer des résultats en théorie spectrale, tels que le théorème spectral pour les opérateurs auto-adjoints. Les mesures spectrales ont des propriétés similaires aux mesures réelles positives.