Théorie des catégories supérieuresEn mathématiques, la théorie des catégories supérieures est la partie de la théorie des catégories à un ordre supérieur, ce qui signifie que certaines égalités sont remplacées par des flèches explicites afin de pouvoir étudier explicitement la structure derrière ces égalités. La théorie des catégories supérieures est souvent appliquée en topologie algébrique (en particulier en théorie de l'homotopie ), où l'on étudie les invariants algébriques des espaces, tels que leur ∞-groupoïde fondamental faible.
Fibration de HopfEn géométrie la fibration de Hopf donne une partition de la sphère à 3-dimensions S3 par des grands cercles. Plus précisément, elle définit une structure fibrée sur S3. L'espace de base est la sphère à 2-dimensions S2, la fibre modèle est un cercle S1. Ceci signifie notamment qu'il existe une application p de projection de S3 sur S2, telle que les images réciproques de chaque point de S2 soient des cercles. Cette structure a été découverte par Heinz Hopf en 1931.
Bousfield localizationIn , a branch of mathematics, a (left) Bousfield localization of a replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named after Aldridge Bousfield, who first introduced this technique in the context of localization of topological spaces and spectra. Given a class C of morphisms in a M the left Bousfield localization is a new model structure on the same category as before.
Équivalence de MoritaEn algèbre, et plus précisément en théorie des anneaux, l'équivalence de Morita est une relation entre anneaux. Elle est nommée d'après le mathématicien japonais Kiiti Morita qui l'a introduite dans un article de 1958. L'étude d'un anneau consiste souvent à explorer la catégorie des modules sur cet anneau. Deux anneaux sont en équivalence de Morita précisément lorsque leurs catégories de modules sont équivalentes. L'équivalence de Morita présente surtout un intérêt dans l'étude des anneaux non commutatifs.
Section d'un fibréEn topologie, une section d'un fibré sur un espace topologique est une fonction continue telle que pour tout point de . Toute section est injective. Une section est une généralisation de la notion de graphe d'une fonction. Le graphe d'une fonction g : X → Y peut être identifié à une fonction prenant ses valeurs dans le produit cartésien E = X×Y de X et Y: Une section est une caractérisation abstraite de ce qu'est un graphe. Soit π : E → X la projection sur le premier facteur du produit cartésien: π(x,y) = x.
OrbifoldEn mathématiques, un orbifold (parfois appelé aussi orbivariété) est une généralisation de la notion de variété contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake en 1956 sous le nom de V-manifolds. Pour passer de la notion de variété (différentiable) à celle d'orbifold, on ajoute comme modèles locaux tous les quotients d'ouverts de par l'action de groupes finis. L'intérêt pour ces objets a été ravivé considérablement à la fin des années 70 par William Thurston en relation avec sa conjecture de géométrisation.
Catégorie trianguléeEn mathématiques, une catégorie triangulée est une catégorie dotée d'une structure supplémentaire. De telles catégories ont été suggérées par Alexander Grothendieck et développées par Jean-Louis Verdier dans sa thèse de 1963 pour traiter les catégories dérivées. La notion de t-structure, qui y est directement liée, permet de reconstruire (en un sens partiel) une catégorie à partir d'une catégorie dérivée.
Fibré principalEn topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Relation d'équivalenceEn mathématiques, une relation d'équivalence permet, dans un ensemble, de mettre en relation des éléments qui sont similaires par une certaine propriété. On pourra ainsi regrouper ces éléments par « paquets » d'éléments qui se ressemblent, définissant ainsi la notion de classe d'équivalence, pour enfin construire de nouveaux ensembles en « assimilant » les éléments similaires à un seul et même élément. On aboutit alors à la notion d'ensemble quotient. vignette|upright=1.5|Sur cet ensemble de huit exemplaires de livres, la relation « .