Semigroup actionIn algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set.
Fonction multiplicativeEn arithmétique, une fonction multiplicative est une fonction arithmétique f : N* → C vérifiant les deux conditions suivantes : f(1) = 1 ; pour tous entiers a et b > 0 premiers entre eux, on a : f (ab) = f(a)f(b). Une fonction complètement multiplicative est une fonction arithmétique g vérifiant : g(1) = 1 ; pour tous entiers a et b > 0, on a : g(ab) = g(a)g(b). Ces dénominations peuvent varier d'un ouvrage à un autre : fonction faiblement multiplicative pour fonction multiplicative, fonction multiplicative ou totalement multiplicative pour fonction complètement multiplicative.
SemiautomatonIn mathematics and theoretical computer science, a semiautomaton is a deterministic finite automaton having inputs but no output. It consists of a set Q of states, a set Σ called the input alphabet, and a function T: Q × Σ → Q called the transition function. Associated with any semiautomaton is a monoid called the characteristic monoid, input monoid, transition monoid or transition system of the semiautomaton, which acts on the set of states Q.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Théorème de la progression arithmétiqueEn mathématiques, et plus précisément en théorie des nombres, le théorème de la progression arithmétique, s'énonce de la façon suivante : Ce théorème est une généralisation du théorème d'Euclide sur les nombres premiers. Sa première démonstration, due au mathématicien allemand Gustav Lejeune Dirichlet en 1838, fait appel aux résultats de l'arithmétique modulaire et à ceux de la théorie analytique des nombres. La première démonstration « élémentaire » est due à Atle Selberg en 1949.
Hypothèse ergodiqueL'hypothèse ergodique, ou hypothèse d'ergodicité, est une hypothèse fondamentale de la physique statistique. Elle fut formulée initialement par Ludwig Boltzmann en 1871 pour les besoins de sa théorie cinétique des gaz. Elle s'appliquait alors aux systèmes composés d'un très grand nombre de particules, et affirmait qu'à l'équilibre, la valeur moyenne d'une grandeur calculée de manière statistique est égale à la moyenne d'un très grand nombre de mesures prises dans le temps.
Théorème fondamental de l'arithmétiqueEn mathématiques, et en particulier en arithmétique élémentaire, le théorème fondamental de l'arithmétique ou théorème de décomposition en produit de facteurs premiers s'énonce ainsi : tout entier strictement positif peut être écrit comme un produit de nombres premiers d'une unique façon, à l'ordre près des facteurs. Par exemple, nous pouvons écrire que : = 2 × 3 × 17 ou encore = 2 × 3 × 5 et il n'existe aucune autre factorisation de ou sous forme de produits de nombres premiers, excepté par réarrangement des facteurs ci-dessus.
Fonction complètement multiplicativeEn théorie des nombres, les fonctions définies sur l'ensemble des entiers naturels non nuls et qui respectent les produits sont appelées fonctions complètement multiplicatives ou fonctions totalement multiplicatives. Elles font partie des fonctions multiplicatives, qui ne respectent que les produits de nombres premiers entre eux. En dehors de la théorie des nombres, le terme « fonction multiplicative » est souvent considéré comme synonyme de « fonction complètement multiplicative » tel que défini dans cet article.
Conjecture de Pólyathumb|right|Fonction sommatoire de la fonction de Liouville L(n) jusqu'à n = . thumb|right|Gros plan sur la fonction sommatoire de la fonction de Liouville L(n) dans la région où la conjecture de Pólya est en défaut. En théorie des nombres, la conjecture de Pólya énonce que la plupart (c'est-à-dire plus de la moitié) des entiers naturels inférieurs à un entier donné ont un nombre impair de facteurs premiers. La conjecture a été proposée par le mathématicien hongrois George Pólya en 1919.
Théorie algébrique des nombresEn mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.