Représentations du groupe symétriqueEn mathématiques les représentations du groupe symétrique sont un exemple d'application de la théorie des représentations d'un groupe fini. L'analyse de ces représentations est une illustration des concepts comme le théorème de Maschke, les caractères, la représentation régulière, les représentations induites et la réciprocité de Frobenius. L'histoire des représentations du groupe symétrique et du groupe alterné associés, joue un rôle particulier pour la théorie des caractères.
Corps quasi-algébriquement closEn mathématiques, un corps K est dit quasi-algébriquement clos si tout polynôme homogène P sur K non constant possède un zéro non trivial dès que le nombre de ses variables est strictement supérieur à son degré, autrement dit : si pour tout polynôme P à coefficients dans K, homogène, non constant, en les variables X1, ..., XN et de degré d < N, il existe un zéro non trivial de P sur K, c'est-à-dire des éléments x1, ..., xN de K non tous nuls tels que P(x1, ..., xN) = 0.
Groupe simpleEn mathématiques, un groupe simple est un groupe non trivial qui ne possède pas de sous-groupe distingué autre que lui-même et son sous-groupe trivial. Un groupe est dit simple s'il a exactement deux sous-groupes distingués : ( étant l’élément neutre du groupe) et lui-même. Quelques exemples de groupes simples : Les seuls groupes abéliens simples sont les groupes finis d'ordre premier (ces groupes sont cycliques). Le groupe SO_3(R) des matrices spéciales orthogonales d'ordre 3 à coefficients réels est simple.
Verma moduleVerma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight , where is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds.
Pseudo algebraically closed fieldIn mathematics, a field is pseudo algebraically closed if it satisfies certain properties which hold for algebraically closed fields. The concept was introduced by James Ax in 1967. A field K is pseudo algebraically closed (usually abbreviated by PAC) if one of the following equivalent conditions holds: Each absolutely irreducible variety defined over has a -rational point. For each absolutely irreducible polynomial with and for each nonzero there exists such that and . Each absolutely irreducible polynomial has infinitely many -rational points.
D-moduleEn mathématiques, un D-module est un module sur un anneau D d'opérateurs différentiels. L'intérêt principal des D-modules réside en son utilisation dans l'étude d'équations aux dérivées partielles. La théorie générale des D-modules nécessite une variété algébrique lisse X définie sur un corps K algébriquement clos de caractéristique nulle, par exemple K = C. Le faisceau des opérateurs différentiels DX est défini comme la OX-algèbre générée par les champs de vecteurs sur X, interprétés comme des dérivations.
Clôture algébriqueEn mathématiques, une clôture algébrique d'un corps commutatif K est une extension algébrique L de K qui est algébriquement close, c'est-à-dire telle que tout polynôme de degré supérieur ou égal à un, à coefficients dans L, admet au moins une racine dans L. Une clôture algébrique d'un corps K peut être vue comme une extension algébrique maximale de K. En effet, il suffit de remarquer que si L est une extension algébrique de K, alors une clôture algébrique de L est également une clôture algébrique de K, donc L est contenu dans une clôture algébrique de K.
Coxeter elementIn mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number h of an irreducible root system. A Coxeter element is a product of all simple reflections.
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.