Régression localeLa régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Carte autoadaptativeLes cartes autoadaptatives, cartes auto-organisatrices ou cartes topologiques forment une classe de réseau de neurones artificiels fondée sur des méthodes d'apprentissage non supervisées. Elles sont souvent désignées par le terme anglais self organizing maps (SOM), ou encore cartes de Kohonen du nom du statisticien ayant développé le concept en 1984. La littérature utilise aussi les dénominations : « réseau de Kohonen », « réseau autoadaptatif » ou « réseau autoorganisé ».
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
FinanceLa finance renvoie à un domaine d'activité , aujourd'hui mondialisé, qui consiste à fournir ou trouver l'argent ou les « produits financiers » nécessaire à la réalisation d'une opération économique. La finance permet de faire transiter des capitaux des agents économiques excédentaires (qui disposent d'une épargne à faire fructifier) aux agents économiques déficitaires, qui en ont besoin (pour se financer, croître, etc.) La finance regroupe à la fois le système financier et les opérations financières qui ont lieu dans ce système.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Incertitude de mesurevignette|Mesurage avec une colonne de mesure. En métrologie, une incertitude de mesure liée à un mesurage (d'après le Bureau international des poids et mesures). Elle est considérée comme une dispersion et fait appel à des notions de statistique. Les causes de cette dispersion, liées à différents facteurs, influent sur le résultat de mesurage, donc sur l'incertitude et in fine sur la qualité de la mesure. Elle comprend de nombreuses composantes qui sont évaluées de deux façons différentes : certaines par une analyse statistique, d'autres par d'autres moyens.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.