Signal électriquevignette|Signaux électriques sur l'écran d'un oscilloscope : signal rectanglaire (haut), signal harmonique ou sinusoïdal (bas). Un signal électrique est une grandeur électrique dont la variation dans le temps transporte une information, d'une source à une destination. La grandeur électrique que l'on considère pour la transmission et le traitement du signal peut être directement la différence de potentiel ou l'intensité d'un courant électrique ; ou bien une modulation de l'amplitude, de la fréquence ou de la phase d'une variation périodique de ces grandeurs, qu'on appelle porteuse ; dans les communications numériques par modem des règles complexes régissent la modulation afin d'occuper au mieux la largeur de bande allouée.
Convertisseur analogique-numériquevignette|Symbole normé du convertisseur analogique numérique Un convertisseur analogique-numérique (CAN, parfois convertisseur A/N, ou en anglais ADC pour Analog to Digital Converter ou plus simplement A/D) est un dispositif électronique dont la fonction est de traduire une grandeur analogique en une valeur numérique codée sur plusieurs bits. Le signal converti est généralement une tension électrique. Le résultat de la conversion s'obtient par la formule : où Q est le résultat de Conversion, Ve, la tension à convertir, n le nombre de bits du convertisseur et Vref la tension de référence de la mesure.
Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .
Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Échantillonnage (signal)L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Traitement analogique du signalLe traitement analogique du signal est un type de traitement du signal effectué sur des signaux analogiques continus par un processus analogique, par opposition au traitement numérique du signal discret où le traitement du signal est effectué par un processus numérique. Le terme analogique indique qu'on représente mathématiquement le signal comme une série de valeurs continues, contrairement au terme numérique, qui indique plutôt qu'on représente le signal par une série de valeurs discrètes.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
Bayesian linear regressionBayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often labelled ) conditional on observed values of the regressors (usually ).