Espace de Hilbert à noyau reproduisantEn analyse fonctionnelle, un espace de Hilbert à noyau reproduisant est un espace de Hilbert de fonctions pour lequel toutes les applications sont des formes linéaires continues. De manière équivalente, il existe des espaces qu'on peut définir par des noyaux reproduisants. Le sujet a été originellement et simultanément développé par Nachman Aronszajn et Stefan Bergman en 1950. Les espaces de Hilbert à noyau reproduisant sont parfois désignés sous l’acronyme issu du titre anglais RKHS, pour Reproducing Kernel Hilbert Space.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Intégration de VerletLintégration de Verlet est un schéma d'intégration qui permet de calculer la trajectoire de particules en simulation de dynamique moléculaire. Cette méthode offre une meilleure stabilité que la plus simple méthode d'Euler (créée au ), de même que d'importantes propriétés dans les systèmes physiques, telles que la réversibilité dans le temps et la conservation de propriété. À première vue, il peut sembler naturel de calculer les trajectoires en utilisant la méthode d'Euler. Cependant, ce type d'intégration souffre de nombreux problèmes.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Cube de HilbertEn topologie, on appelle cube de Hilbert l'espace produit muni de la topologie produit, autrement dit : l'espace des suites à valeurs dans [0, 1], muni de la topologie de la convergence simple. D'après le théorème de Tykhonov, c'est un espace compact. Il est homéomorphe au sous-espace suivant de l, pour tous : Il est donc métrisable et par conséquent (puisqu'il est compact), séparable et possède la propriété suivante : Cela fournit en particulier un moyen commode pour compactifier les espaces métrisables séparables, et aussi un critère pour les classifier selon leur complexité ; par exemple un espace est polonais si et seulement s'il est homéomorphe à l'intersection d'une suite d'ouverts de K.
Intégrateur symplectiqueUn intégrateur symplectique est une méthode numérique de résolution approchée des équations de la mécanique hamiltonienne, valable pour des faibles variations de temps. Les hypothèses de la mécanique hamiltonienne sont souvent appliquées à la mécanique céleste. Le système à étudier peut s'écrire sous la forme d'une action I et d'un angle φ, de manière que le système différentiel se réduise à : x := (I, φ) et : où l'on a noté : le crochet de Poisson de et . On voudrait connaître la solution formelle au système intégrable .
Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Méthode du gradient conjuguévignette|Illustration de la méthode du gradient conjugué. En analyse numérique, la méthode du gradient conjugué est un algorithme pour résoudre des systèmes d'équations linéaires dont la matrice est symétrique définie positive. Cette méthode, imaginée en 1950 simultanément par Cornelius Lanczos, Eduard Stiefel et Magnus Hestenes, est une méthode itérative qui converge en un nombre fini d'itérations (au plus égal à la dimension du système linéaire).
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.