Ouvert (topologie)En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique. Il existe plusieurs définitions des ouverts suivant le type d'espace concerné. Nous reprenons ici la définition pour le cas le plus général à savoir celui des espaces topologiques.
Ensemble de CantorEn mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Ensemble GδEn mathématiques et, en particulier, en topologie, un ensemble Gδ (lire « G delta ») est une intersection dénombrable d'ensembles ouverts. La notation introduite par Felix Hausdorff vient de l'allemand, le G désignant un ouvert (Gebiet) et le δ désignant une intersection (Durchschnitt). La notation Gδ est équivalente à celle de utilisée dans la hiérarchie de Borel. L'intersection dénombrable d'ensembles Gδ est un ensemble Gδ et l'union finie d'ensembles Gδ est un ensemble Gδ. Le complémentaire d'un ensemble Gδ est un ensemble Fσ.
Espace σ-compactEn mathématiques, un espace topologique est dit σ-compact (ou localement compact dénombrable à l'infini) s'il est l'union dénombrable de sous-espaces compacts. Un espace est dit σ-localement compact s'il est à la fois σ-compact et localement compact. Tout espace compact est σ-compact, et tout espace σ-compact est de Lindelöf (c'est-à-dire que tout recouvrement ouvert a un sous-recouvrement dénombrable).
Fluide incompressibleUn fluide incompressible est un fluide dont le volume est considéré comme constant quelle que soit la pression qu'il subit, tout fluide étant en réalité sensible à la pression. Par nature, tous les fluides sont compressibles, certains plus que d'autres, et en phase gazeuse considérablement plus qu'en phase liquide. La compressibilité d'un fluide mesure la variation de volume d'une certaine quantité de ce fluide lorsqu'il est soumis à une pression extérieure.
Théorème de Banach-SteinhausLe théorème de Banach-Steinhaus fait partie, au même titre que le théorème de Hahn-Banach et le théorème de Banach-Schauder, des résultats fondamentaux de l'analyse fonctionnelle. Publié initialement par Stefan Banach et Hugo Steinhaus en 1927, il a aussi été prouvé indépendamment par Hans Hahn, et a connu depuis de nombreuses généralisations. La formulation originelle de ce théorème est la suivante : Lorsque E est un espace de Banach (donc de Baire), il suffit donc que la famille soit simplement bornée sur une partie comaigre, comme E lui-même.
Droite de SorgenfreyEn mathématiques, la droite de Sorgenfrey — souvent notée S — est la droite réelle R munie de la topologie (plus fine que la topologie usuelle) dont une base est constituée des intervalles semi-ouverts de la forme [a, b[ (pour a et b réels tels que a < b). Robert Sorgenfrey l'a définie pour démontrer que le produit de deux espaces paracompacts n'est pas toujours paracompact ; c'est aussi un exemple simple d'espace normal dont le carré n'est pas normal.
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.
Solution tamponEn chimie, une solution tampon est une solution qui maintient approximativement le même pH malgré l'addition de petites quantités d'un acide ou d'une base, ou malgré une dilution. Si l'un de ces trois critères n'est pas vérifié alors la solution est une solution pseudo-tampon. Une solution tampon est composée : soit d'un acide faible HA et de son anion A−. Il s'agit par exemple du couple CH3COOH/CH3COO− ; soit d'une base faible B et de son cation BH+ comme le couple NH4+/NH3.
Acid strengthAcid strength is the tendency of an acid, symbolised by the chemical formula HA, to dissociate into a proton, H+, and an anion, A-. The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions. HA -> H+ + A- Examples of strong acids are hydrochloric acid (HCl), perchloric acid (HClO4), nitric acid (HNO3) and sulfuric acid (H2SO4). A weak acid is only partially dissociated, with both the undissociated acid and its dissociation products being present, in solution, in equilibrium with each other.