Filter (set theory)In mathematics, a filter on a set is a family of subsets such that: and if and , then If , and , then A filter on a set may be thought of as representing a "collection of large subsets", one intuitive example being the neighborhood filter. Filters appear in order theory, model theory, and set theory, but can also be found in topology, from which they originate. The dual notion of a filter is an ideal.
Racine carréeEn mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
Entier quadratiqueEn mathématiques, un entier quadratique est un nombre complexe, racine d'un polynôme unitaire du second degré à coefficients entiers. La notion de nombre algébrique de degré inférieur ou égal à 2 est plus générale : elle correspond à un nombre complexe, racine d'un polynôme du second degré à coefficients seulement rationnels. Ces nombres particuliers disposent de propriétés algébriques.
Droite réelle achevéeEn mathématiques, la droite réelle achevée désigne l'ensemble ordonné constitué des nombres réels auxquels sont adjoints deux éléments supplémentaires : un plus grand élément, noté +∞ et un plus petit élément, noté –∞. Elle est notée [–∞, +∞], R ∪ {–∞, +∞} ou (notation toutefois ambiguë, car la barre signifie généralement "complémentaire" en théorie des ensembles, ou "adhérence" en topologie). Cet ensemble est très utile en analyse, notamment pour généraliser les formules et théorèmes sur les limites sans avoir à effectuer une disjonction des cas, et dans certaines théories de l'intégration.
Ultrafiltrevignette|Le diagramme de Hasse montre l'ensemble de tous les sous-ensembles de {1,2,3,4}, partiellement ordonnés par inclusion d'ensemble (⊆). L'ensemble supérieur ↑{1,4} est surligné en vert foncé, c'est un filtre. Cependant, ce n'est pas un ultrafiltre, car il peut toujours être étendu au filtre correctement plus grand ↑{1}, représenté en vert clair. Ce dernier ne peut pas être étendu à son tour à un filtre non trivialement plus grand, il s'agit donc d'un ultrafiltre.
Groupe discretIn mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.
Entier de Gaussthumb|Carl Friedrich Gauss. En mathématiques, et plus précisément, en théorie algébrique des nombres, un entier de Gauss est un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. Il s'agit formellement d'un élément de l'anneau des entiers quadratiques de l'extension quadratique des rationnels de Gauss L'ensemble des entiers de Gauss possède une structure forte. Comme tous les ensembles d'entiers algébriques, muni de l'addition et de la multiplication ordinaire des nombres complexes, il forme un anneau intègre, généralement noté , désignant ici l'unité imaginaire.
Point isoléEn topologie, un point x d'un espace topologique E est dit isolé si le singleton {x} est un ouvert. Formulations équivalentes : {x} est un voisinage de x ; x n'est pas adhérent à E{x} (x n'est pas un « point d'accumulation »). En particulier, si E est un espace métrique (par exemple une partie d'un espace euclidien), x est un point isolé de E s'il existe une boule ouverte centrée en x qui ne contient pas d'autre point de E. Un espace topologique dans lequel tout point est isolé est dit discret.
Anneau des entiersEn algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans .
Simple Lie groupIn mathematics, a simple Lie group is a connected non-abelian Lie group G which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. Together with the commutative Lie group of the real numbers, , and that of the unit-magnitude complex numbers, U(1) (the unit circle), simple Lie groups give the atomic "blocks" that make up all (finite-dimensional) connected Lie groups via the operation of group extension.