Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Cristal photoniqueLes cristaux photoniques sont des structures périodiques de matériaux diélectriques, semi-conducteurs ou métallo-diélectriques modifiant la propagation des ondes électromagnétiques de la même manière qu'un potentiel périodique dans un cristal semi-conducteur affecte le déplacement des électrons en créant des bandes d'énergie autorisées et interdites. Les longueurs d'onde pouvant se propager dans le cristal se nomment des modes dont la représentation énergie-vecteur d'onde forme des bandes.
Photoniquevignette|Image de la lumière d'un laser ultra large-bande émergeant d'une fibre monomode de cristal photonique dont on voit la sortie à droite (point blanc).|alt=Sur fond noir une grande tache en forme d'étoile irisée à gauche et un petit point blanc à droite. La photonique est la branche de la physique concernant l'étude et la fabrication de composants permettant la génération, la transmission, le traitement (modulation, amplification) ou la conversion de signaux optiques.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Optique intégréeL'optique intégrée concerne l'utilisation de technologies similaires à celles de la microélectronique pour la réalisation de composants optiques de très petite dimension. La réalisation des systèmes d'optique intégrée se fait par modification d'un substrat comme le phosphure d'indium. Ces technologies permettent de réaliser dans de faibles volumes des fonctions optiques élémentaires ou élaborées impossibles à réaliser par d’autres technologies. Leur géométrie générale est celle de plaquettes de quelques cm d'une épaisseur maximale de .
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Orthogonal diagonalizationIn linear algebra, an orthogonal diagonalization of a symmetric matrix is a diagonalization by means of an orthogonal change of coordinates. The following is an orthogonal diagonalization algorithm that diagonalizes a quadratic form q(x) on Rn by means of an orthogonal change of coordinates X = PY. Step 1: find the symmetric matrix A which represents q and find its characteristic polynomial Step 2: find the eigenvalues of A which are the roots of . Step 3: for each eigenvalue of A from step 2, find an orthogonal basis of its eigenspace.
Matrice normaleEn algèbre linéaire, une matrice carrée A à coefficients complexes est une matrice normale si elle commute avec sa matrice adjointe A*, c'est-à-dire si A⋅A* = A*⋅A. Toutes les matrices hermitiennes, ou unitaires sont normales, en particulier, parmi les matrices à coefficients réels, toutes les matrices symétriques, antisymétriques ou orthogonales. Ce théorème — cas particulier du théorème de décomposition de Schur — est connu sous le nom de théorème spectral, et les éléments diagonaux de UAU sont alors les valeurs propres de A.
Circuit intégréLe circuit intégré (CI), aussi appelé puce électronique, est un composant électronique, basé sur un semi-conducteur, reproduisant une ou plusieurs fonctions électroniques plus ou moins complexes, intégrant souvent plusieurs types de composants électroniques de base dans un volume réduit (sur une petite plaque), rendant le circuit facile à mettre en œuvre. Il existe une très grande variété de ces composants divisés en deux grandes catégories : analogique et numérique.