Vecteur d'ondeEn physique, un vecteur d'onde (ou « vecteur de phase » notamment en électronique) est un vecteur utilisé pour décrire une onde : son module est le nombre d'onde ou le nombre d'onde angulaire de l'onde (qui est inversement proportionnel à la longueur d'onde), sa direction est généralement la direction de propagation de l'onde (mais pas toujours, voir ci-dessous). Pour une onde monochromatique, ce vecteur est perpendiculaire au front d'onde.
Chirpvignette|Un chirp linéaire d'amplitude constante. Un chirp (mot d'origine anglaise signifiant « gazouillis ») est par définition un signal pseudo-périodique modulé en fréquence autour d'une fréquence porteuse et également modulé en amplitude par une enveloppe dont les variations sont lentes par rapport aux oscillations de la phase : La partie réelle de ce signal est tout simplement : On considère souvent le cas particulier du chirp à rampe de fréquence linéaire et à enveloppe constante qui est tellement courant d'utilisation que l'on a tendance à ramener la notion de chirp à ce seul cas particulier : Dans les applications radar ou sonar le chirp linéaire est souvent le signal utilisé pour réaliser la compression d'impulsion.
Internal waveInternal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change (continuously or discontinuously) with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance (as in the case of the thermocline in lakes and oceans or an atmospheric inversion), the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Soliton optiqueUn soliton optique est une impulsion électromagnétique se propageant sans déformation. Par sa nature même, elle est solution stable de l'équation de propagation dans le milieu qu'elle traverse (typiquement une fibre optique). Le soliton naît d'un équilibre entre deux effets qui se compensent. Dans le cas d'un soliton optique, ces effets sont essentiellement l'automodulation de phase et la dispersion anormale. Imaginons une impulsion électromagnétique se propageant.
Space–time block codeSpace–time block coding is a technique used in wireless communications to transmit multiple copies of a data stream across a number of antennas and to exploit the various received versions of the data to improve the reliability of data transfer. The fact that the transmitted signal must traverse a potentially difficult environment with scattering, reflection, refraction and so on and may then be further corrupted by thermal noise in the receiver means that some of the received copies of the data may be closer to the original signal than others.
Orbitale atomiqueredresse=1.5|vignette|Représentation des nuages de probabilité de présence de l'électron (en haut) et des isosurfaces à 90 % (en bas) pour les orbitales 1s, 2s et 2p. Dans le cas des orbitales 2p ( ), les trois isosurfaces 2p, 2p et 2p représentées correspondent à , et . Les couleurs indiquent la phase de la fonction d'onde : positive en rouge, négative en bleu. En mécanique quantique, une orbitale atomique est une fonction mathématique qui décrit le comportement ondulatoire d'un électron ou d'une paire d'électrons dans un atome.
Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.