Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Décade (physique)Une décade est un facteur de 10 entre deux nombres. C'est un concept important dans les représentations graphiques de type logarithmiques, en particulier pour les fréquences, par exemple lorsque nous décrivons la réponse en fréquence d'un système électronique, tels qu'un amplificateur audio ou un filtre électronique. En physique, la signification est légèrement différente : elle représente l'intervalle compris entre 10D inclus et 10D+1 exclus, où D est un nombre réel quelconque.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Méthode du gradient conjuguévignette|Illustration de la méthode du gradient conjugué. En analyse numérique, la méthode du gradient conjugué est un algorithme pour résoudre des systèmes d'équations linéaires dont la matrice est symétrique définie positive. Cette méthode, imaginée en 1950 simultanément par Cornelius Lanczos, Eduard Stiefel et Magnus Hestenes, est une méthode itérative qui converge en un nombre fini d'itérations (au plus égal à la dimension du système linéaire).
Courbe de largeur constanteEn géométrie, une courbe de largeur constante est une courbe plane fermée dont la largeur, mesurée par la distance entre deux droites parallèles opposées qui lui sont tangentes, est la même quelle que soit l'orientation de ces droites. Soit une courbe plane fermée. Pour une direction donnée, on peut définir deux droites parallèles (appelées « lignes d'appui ») qui lui sont tangentes en deux points distincts. La courbe est dite de largeur constante si la distance entre les lignes d'appui est indépendante de leur direction.
Learning rateIn machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.