Publication

Data-driven LPV Control for Micro-disturbance Rejection in a Hybrid Isolation Platform

Concepts associés (34)
Linear time-invariant system
In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Système invariant
Un processus transformant un signal d’entrée en un signal de sortie (signaux électriques par exemple) est appelé système invariant (ou stationnaire) lorsqu’une translation du temps appliquée à l’entrée se retrouve à la sortie. Dans ce sens, la sortie ne dépend pas explicitement du temps. Si au signal d'entrée , un système invariant associe une sortie , alors quel que soit le décalage temporel appliqué à l'entrée, le système associe au signal la sortie décalée .
Critère de Nyquist
vignette|droite|Diagramme de Nyquist de la fonction de transfert . Le critère de stabilité de Nyquist est une règle graphique utilisée en automatique et en théorie de la stabilité, qui permet de déterminer si un système dynamique est stable. Il a été formulé indépendamment par deux électrotechniciens : l'Allemand Felix Strecker de Siemens en 1930 et l'Américain Harry Nyquist des Laboratoires Bell en 1932.
Système linéaire
Un système linéaire (le terme système étant pris au sens de l'automatique, à savoir un système dynamique) est un objet du monde matériel qui peut être décrit par des équations linéaires (équations linéaires différentielles ou aux différences), ou encore qui obéit au principe de superposition : toute combinaison linéaire des variables de ce système est encore une variable de ce système. Les systèmes non linéaires sont plus difficiles à étudier que les systèmes linéaires.
Domaine fréquentiel
Le domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Théorie du contrôle
En mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Circuit en boucle ouverte
En régulation, un système en boucle ouverte ou contrôle ouvert est une forme de contrôle d'un système qui ne prend pas en compte la réponse de ce système (appelée rétroaction, en anglais : feedback). Ce contrôle, simple en principe, est à utiliser avec précaution si le système est naturellement instable. Pour le mettre en place il faut au préalable avoir parfaitement modélisé le système, que la commande soit parfaitement adaptée et qu'il n'y ait aucune perturbation.
Time-variant system
A time-variant system is a system whose output response depends on moment of observation as well as moment of input signal application. In other words, a time delay or time advance of input not only shifts the output signal in time but also changes other parameters and behavior. Time variant systems respond differently to the same input at different times. The opposite is true for time invariant systems (TIV). There are many well developed techniques for dealing with the response of linear time invariant systems, such as Laplace and Fourier transforms.
Root locus analysis
In control theory and stability theory, root locus analysis is a graphical method for examining how the roots of a system change with variation of a certain system parameter, commonly a gain within a feedback system. This is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot).
Closed-loop controller
A closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.