Distribution de DiracEn mathématiques, plus précisément en analyse, la distribution de Dirac, aussi appelée par abus de langage fonction δ de Dirac, introduite par Paul Dirac, peut être informellement considérée comme une fonction qui prend une « valeur » infinie en 0, et la valeur zéro partout ailleurs, et dont l'intégrale sur R est égale à 1. La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives.
Dualité de cordesEn théorie des cordes ou des supercordes on appelle dualité une équivalence physique entre deux modèles construits a priori de façon différente. Par exemple comme on va le voir plus bas, la théorie des cordes bosonique à 26 dimensions compactifiée sur un cercle de rayon est équivalente à la même théorie bosonique mais compactifiée cette fois sur un cercle de rayon . Cette dualité porte le nom de dualité T.
Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Principe holographiquevignette|Cette image est une reconstruction assez fidèle d'une image du collecteur de Calabi-Yau qui apparaît comme une figure dans l'article : Leonard Susskind (novembre 2003). "Superstrings (Features : November 2003)". Physics World 16 (11). En physique théorique, le principe holographique est une conjecture spéculative dans le cadre de la théorie de la gravité quantique, proposée par Gerard 't Hooft en 1993 puis améliorée par Leonard Susskind en 1995. Son nom métaphorique vient de l'analogie avec l'holographie.
Exponentielle de base aEn analyse réelle, l'exponentielle de base est la fonction notée exp qui, à tout réel x, associe le réel a. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe a. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur R, prenant la valeur a en 1 et transformant une somme en produit.
Opérateur laplacienL'opérateur laplacien, ou simplement le laplacien, est l'opérateur différentiel défini par l'application de l'opérateur gradient suivie de l'application de l'opérateur divergence : Intuitivement, il combine et relie la description statique d'un champ (décrit par son gradient) aux effets dynamiques (la divergence) de ce champ dans l'espace et le temps. C'est l'exemple le plus simple et le plus répandu d'opérateur elliptique.
Expression de forme ferméeEn mathématiques, une expression de forme fermée (également appelée expression fermée, expression de forme close, expression close ou expression explicite) est une expression mathématique pouvant s'obtenir par une combinaison de nombres ou de fonctions et d'opérations de référence. On emploie parfois le terme formule à la place du terme expression : formule de forme fermée, formule explicite, formule de forme close, etc. Le plus souvent, cette terminologie s'emploie pour des solutions d'équations ou de systèmes d'équations.
Flux (physique)En physique, un flux est une intégrale de surface de la composante normale d'un champ vectoriel sur une surface donnée. Le champ vectoriel associé est souvent nommé densité de flux. Cette définition rejoint celle du flux en mathématiques. Si dans certains domaines de la physique, le flux est également un débit, lié à un déplacement de matière ou à un transfert d'énergie, ce n'est pas toujours le cas : on aime malgré tout se représenter un flux comme caractéristique de ce qui s'écoule le long des lignes de champs à travers la frontière que marque la surface.
Fonction concaveEn mathématiques, une fonction f est dite concave lorsque la fonction opposée –f est convexe. Le fait que l'on préfère commencer par définir la notion de fonction convexe et d'en déduire celle de fonction concave trouve son origine dans le fait que l'on définit aisément la notion d'ensemble convexe, alors que celle d'« ensemble concave » est moins naturelle. On définit alors les fonctions convexes comme celles ayant un épigraphe convexe (les fonctions concaves ont un hypographe convexe).
Parité d'une fonctionEn mathématiques, la parité d'une fonction d'une variable réelle, complexe ou vectorielle est une propriété qui requiert d'abord la symétrie du domaine de définition par rapport à l'origine, puis s'exprime par l'une ou l'autre des relations suivantes : fonction paire : pour tout x du domaine de définition, f (−x) = f (x) ; fonction impaire : pour tout x du domaine de définition, f (−x) = −f (x).