Formule de Gauss-Bonnetvignette|Exemple d'une surface à laquelle le théorème de Gauss-Bonnet peut être appliqué En géométrie différentielle, la formule de Gauss-Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d'Euler) des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d'une version du théorème, mais ne la publia jamais, et Pierre Ossian Bonnet, qui en publia un cas particulier en 1848.
Courburevignette|Le déplacement d'une Dictyostelium discoideum dont la couleur du contour est fonction de la courbure. Échelle : 5 μm ; durée : 22 secondes. Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle et un cercle un objet de courbure constante positive, valant 1/R (inverse du rayon) ; dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère est un objet à deux dimensions de courbure constante positive.
Pavage hexagonalLe pavage hexagonal est, en géométrie, un pavage du plan euclidien constitué d'hexagones réguliers. C'est l'un des trois pavages réguliers du plan euclidien, avec le pavage carré et le pavage triangulaire. Le pavage hexagonal possède un symbole de Schläfli de {6,3}, signifiant que chaque sommet est entouré par 3 hexagones. Le Théorème du nid d'abeille énonce que le pavage hexagonal régulier est la partition du plan en surfaces égales ayant le plus petit périmètre.
Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Deux dimensionsDeux dimensions, bidimensionnel ou 2D sont des expressions qui caractérisent un espace conçu à partir de deux dimensions. Ce type de plan peut représenter des corps en une ou deux dimensions. Un espace en deux dimensions est un plan. Un objet en deux dimensions a donc une superficie mais pas de volume. En mathématiques, le plan composé de deux dimensions est à distinguer de l’espace, qui est lui repéré par trois axes orthogonaux.
Tomographievignette|Principe de base de la tomographie par projections : les coupes tomographiques transversales S1 et S2 sont superposées et comparées à l’image projetée P. La tomographie est une technique d’, très utilisée dans l’, ainsi qu’en géophysique, en astrophysique et en mécanique des matériaux. Cette technique permet de reconstruire le volume d’un objet à partir d’une série de mesures effectuées depuis l’extérieur de cet objet.
TomodensitométrieLa tomodensitométrie (TDM), dite aussi scanographie, tomographie axiale calculée par ordinateur (TACO), CT-scan (CT : computed tomography), CAT-scan (CAT : computer-assisted tomography), ou simplement scanner ou scanneur pour l'appareil, est une technique d' qui consiste à mesurer l'absorption des rayons X par les tissus puis, par traitement informatique, à numériser et enfin reconstruire des images 2D ou 3D des structures anatomiques.
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Tube à rayons XLes tubes à rayons X sont des dispositifs permettant de produire des rayons X, en général pour trois types d'applications : radiographie et tomographie (, science des matériaux) ; Cristallographie aux rayons X (diffraction de rayons X, voir aussi l'article Diffractomètre) ; analyse chimique élémentaire par spectrométrie de fluorescence des rayons X. Il existe plusieurs types de tubes. Quel que soit le type de tube, la génération des rayons X se fait selon le même principe.
Courbure de Gaussvignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten.