Algèbre de HeytingEn mathématiques, une algèbre de Heyting est une structure algébrique introduite en 1930 par le mathématicien néerlandais Arend Heyting pour rendre compte formellement de la logique intuitionniste de Brouwer, alors récemment développée. Les algèbres de Heyting sont donc pour la logique intuitionniste analogue à ce que sont des algèbres de Boole pour la logique classique : un modèle formel permettant d'en fixer les propriétés.
Algèbre associativevignette|Relations entre certaines structures algébriques. En mathématiques, une algèbre associative (sur un anneau commutatif A) est une des structures algébriques utilisées en algèbre générale. C'est un anneau (ou simplement un pseudo-anneau) B muni d'une structure supplémentaire de module sur A et tel que la loi de multiplication de l'anneau B soit A-bilinéaire. C'est donc un cas particulier d'algèbre sur un anneau. Soit A un anneau commutatif. On dit que (B , + , . , × ) est une A-algèbre associative lorsque : (B , + , .
Cohomologie étaleLa cohomologie étale est la théorie cohomologique des faisceaux associée à la topologie étale. Elle mime le comportement habituel de la cohomologie classique sur des objets mathématiques où celle-ci n'est pas envisageable, en particulier les schémas et les espaces analytiques. La cohomologie étale a été introduite pour les schémas par Alexander Grothendieck et Michael Artin dans SGA 4 et 41⁄2, avec l'objectif de réaliser une cohomologie de Weil et ainsi résoudre les conjectures de Weil, objectif partiellement rempli, plus tard complété par Pierre Deligne avec l'introduction de la cohomologie l-adique.
Size theoryIn mathematics, size theory studies the properties of topological spaces endowed with -valued functions, with respect to the change of these functions. More formally, the subject of size theory is the study of the natural pseudodistance between size pairs. A survey of size theory can be found in The beginning of size theory is rooted in the concept of size function, introduced by Frosini. Size functions have been initially used as a mathematical tool for shape comparison in computer vision and pattern recognition.
Homologie de FloerL'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.
Sphère d'homologieEn topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Reduced homologyIn mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise statements to be made (as in Alexander duality) and eliminates many exceptional cases (as in the homology groups of spheres). If P is a single-point space, then with the usual definitions the integral homology group H0(P) is isomorphic to (an infinite cyclic group), while for i ≥ 1 we have Hi(P) = {0}.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Algèbre de Boole (structure)vignette|Exemple d'algèbre de Boole : l'ensemble des parties de l'ensemble {x, y, z} illustré par son diagramme de Hasse. En mathématiques, une algèbre de Boole, ou parfois anneau de Boole, est une structure algébrique étudiée en particulier en logique mathématique. Une algèbre de Boole peut être définie soit comme une structure ordonnée particulière, soit comme une structure algébrique particulière, soit comme un anneau (unitaire) dont tout élément égale son carré.