Symétrie conformeEn physique théorique, la symétrie conforme désigne la symétrie sous changement d'échelle, on dit aussi sous dilatation, ainsi que sous les transformations conformes spéciales. Sa combinaison avec le groupe de Poincaré donne le groupe de symétrie conforme ou plus simplement, groupe conforme. Voici un exemple de représentation du groupe conforme dans l'espace-temps, ou plus précisément de son algèbre de Lie où les sont les générateurs associés au groupe de Lorentz, les génèrent les translations de l'espace-temps (les valeurs propres de ces derniers correspondant au quadrivecteur impulsion-énergie), engendre la transformation par dilatation et enfin les engendrent les transformations conformes spéciales.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Interaction électrofaibleL’interaction électrofaible, aussi appelée force électrofaible, est la description unifiée de deux des quatre interactions fondamentales de l'univers, à savoir l'électromagnétisme (appelé électrodynamique quantique dans sa version quantique) et l'interaction faible. Ces deux forces paraissent pourtant très différentes aux échelles d'énergie atomique, et même nucléaire : la force électromagnétique est dite de portée infinie car on peut l'observer aisément à l'échelle macroscopique tandis que la force faible a une influence uniquement à l'échelle microscopique, au niveau du noyau atomique.
Particule élémentaireEn physique des particules, une particule élémentaire, ou particule fondamentale, est une particule dont on ne connaît pas la composition : on ne sait pas si elle est constituée d'autres particules plus petites. Les particules élémentaires incluent les fermions fondamentaux (quarks, leptons, et leurs antiparticules, les antiquarks et les antileptons) qui composent la matière et l'antimatière, ainsi que des bosons (bosons de jauge et boson de Higgs) qui sont des vecteurs de forces et jouent un rôle de médiateur dans les interactions élémentaires entre les fermions.
Invariance de LorentzL' est la propriété d'une quantité physique d'être inchangée par transformation de Lorentz. Il s'agit de quantités physiques qui, lorsqu'elles sont exprimées de manière tensorielle, sont des scalaires ou pseudoscalaires. L' est une des trois hypothèses composant le principe d'équivalence d'Einstein. Dans les cadres de la relativité restreinte et donc de la relativité générale, une quantité est dite invariante de Lorentz, scalaire de Lorentz ou encore invariante relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz.
Partition function (quantum field theory)In quantum field theory, partition functions are generating functionals for correlation functions, making them key objects of study in the path integral formalism. They are the imaginary time versions of statistical mechanics partition functions, giving rise to a close connection between these two areas of physics. Partition functions can rarely be solved for exactly, although free theories do admit such solutions. Instead, a perturbative approach is usually implemented, this being equivalent to summing over Feynman diagrams.
Grande unificationEn physique théorique, une théorie de grande unification, encore appelée GUT (pour Grand Unified Theory en anglais) est un modèle de la physique des particules dans lequel les trois interactions de jauge du modèle standard (électromagnétique, nucléaire faible et nucléaire forte) se fusionnent en une seule à hautes énergies. Cette interaction unifiée est caractérisée par une symétrie de jauge plus grande et donc plusieurs vecteurs de force, mais une seule constante de couplage unifiée.
Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
S-matrix theoryS-matrix theory was a proposal for replacing local quantum field theory as the basic principle of elementary particle physics. It avoided the notion of space and time by replacing it with abstract mathematical properties of the S-matrix. In S-matrix theory, the S-matrix relates the infinite past to the infinite future in one step, without being decomposable into intermediate steps corresponding to time-slices. This program was very influential in the 1960s, because it was a plausible substitute for quantum field theory, which was plagued with the zero interaction phenomenon at strong coupling.
Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.