Systematic samplingIn survey methodology, systematic sampling is a statistical method involving the selection of elements from an ordered sampling frame. The most common form of systematic sampling is an equiprobability method. In this approach, progression through the list is treated circularly, with a return to the top once the list ends. The sampling starts by selecting an element from the list at random and then every kth element in the frame is selected, where k, is the sampling interval (sometimes known as the skip): this is calculated as: where n is the sample size, and N is the population size.
Non-uniform random variate generationNon-uniform random variate generation or pseudo-random number sampling is the numerical practice of generating pseudo-random numbers (PRN) that follow a given probability distribution. Methods are typically based on the availability of a uniformly distributed PRN generator. Computational algorithms are then used to manipulate a single random variate, X, or often several such variates, into a new random variate Y such that these values have the required distribution.
Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Hasardvignette|Les jeux de dés sont des symboles du hasard (jeux de hasard). vignette|Tyché ou Fortuna et sa corne d'abondance (fortune, hasard, en grec ancien, sort en latin) déesse allégorique gréco-romaine de la chance, des coïncidences, de la fortune, de la prospérité, de la destinée...|alt= Le hasard est le principe déclencheur d'événements non liés à une cause connue. Il peut être synonyme de l'« imprévisibilité », de l'« imprédictibilité », de fortune ou de destin.
Processus de CoxUn processus de Cox (nommé d'après le statisticien britannique David Cox), connu aussi sous le nom de double processus stochastique de Poisson, est un processus stochastique généralisant le processus de Poisson dans lequel la moyenne n'est pas constante mais varie dans l'espace ou le temps. Dans le cadre du processus de Cox, l'intensité dépendant du temps est un processus stochastique séparé du processus de Poisson. Un exemple serait un potentiel d'action (appelé aussi influx nerveux) d'un neurone sensoriel avec une stimulation externe.
Échantillonnage de GibbsL' est une méthode MCMC. Étant donné une distribution de probabilité sur un univers , cet algorithme définit une chaîne de Markov dont la distribution stationnaire est . Il permet ainsi de tirer aléatoirement un élément de selon la loi (on parle d'échantillonnage). Comme pour toutes les méthodes de Monte-Carlo à chaîne de Markov, on se place dans un espace vectoriel Ɛ de dimension finie n ; on veut générer aléatoirement N vecteurs x(i) suivant une distribution de probabilité π ; pour simplifier le problème, on détermine une distribution qx(i) permettant de générer aléatoirement x(i + 1) à partir de x(i).
Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
Variable aléatoirevignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
Échantillonneur-bloqueurvignette|250x250px|Fig.1. Schéma simplifié d'un échantillonneur-bloqueur. L'entrée du signal analogique est notée AI, le signal de commande de l'interrupteur est noté C, la sortie du signal échantillonné est notée AO. vignette|Fig.2. Échantillonnage simple. Le signal n'existe qu'aux instants d'échantillonnage. vignette|Fig.3. Échantillonnage-blocage. Entre deux instants d'échantillonnage, le signal est maintenu constant et peut être aisément utilisé.
Méthode de la transformée inverseLa méthode de la transformée inverse est une méthode permettant d'échantillonner une variable aléatoire X de loi donnée à partir de l'expression de sa fonction de répartition F et d'une variable uniforme sur . Cette méthode repose sur le principe suivant, parfois connu sous le nom de théorème de la réciproque : soient F une fonction de répartition, Q la fonction quantile associée, et U une variable uniforme sur . Alors, la variable aléatoire X = Q(U) a pour fonction de répartition F.