Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Infiltration (hydrologie)L'infiltration désigne en hydrologie et sciences de la terre, le processus par lequel l'eau pénètre le sol ou un autre substrat à partir de la surface du sol ou du substrat. Si le taux de précipitations dépasse le taux d'infiltration (et d'évaporation-évapotranspiration, l'évapotranspiration potentielle), un phénomène de ruissellement se produit habituellement, sauf s'il existe une barrière physique.
Espace poreux du solL'espace poreux du sol contient les phases liquide et gazeuse du sol, c'est-à-dire tout, sauf la phase solide qui contient principalement des minéraux de différentes tailles ainsi que des composés organiques. Afin de mieux comprendre la porosité, une série d'équations a été utilisée pour exprimer les interactions quantitatives entre les trois phases du sol. Les macropores ou fractures jouent un rôle majeur dans les taux d'infiltration dans de nombreux sols ainsi que dans les modèles d'écoulement préférentiel, la conductivité hydraulique et l'évapotranspiration.
Boucle infinieUne boucle infinie est, en programmation informatique, une boucle dont la condition de sortie n'a pas été définie ou ne peut pas être satisfaite. En conséquence, la boucle ne peut se terminer qu'à l'interruption du programme qui l'utilise. Il y a rarement un intérêt à programmer une boucle infinie. Une telle boucle ne permet pas de faire sortir un résultat, et accapare les ressources de l'ordinateur. Sur un système monotâche, une boucle infinie peut interdire à l'utilisateur toute autre action.
Méthode de la puissance itéréeEn mathématiques, la méthode de la puissance itérée ou méthode des puissances est un algorithme pour calculer la valeur propre dominante d'une matrice. Bien que cet algorithme soit simple à mettre en œuvre et populaire, il ne converge pas très vite. Étant donné une matrice A, on cherche une valeur propre de plus grand module et un vecteur propre associé. Le calcul de valeurs propres n'est en général pas possible directement (avec une formule close) : on utilise alors des méthodes itératives, et la méthode des puissances est la plus simple d'entre elles.
TransforméeEn mathématiques, une transformée consiste à associer une fonction définie sur un domaine à une autre fonction, définie sur un domaine éventuellement différent. Un exemple d'application en physique consiste à étudier un signal défini sur le domaine temporel par sa transformation sur le domaine fréquentiel. Transformée d'Abel Transformée de Fourier Transformée de Fourier locale Transformée de Fourier-Mukai Transformée de Laplace Transformée bidirectionnelle de Laplace Transformée bilatérale de Laplace Trans
Transformation géométriqueUne transformation géométrique est une bijection d'une partie d'un ensemble géométrique dans lui-même. L'étude de la géométrie est en grande partie l'étude de ces transformations. Les transformations géométriques peuvent être classées selon la dimension de l'ensemble géométrique : principalement les transformations planes et les transformations dans l'espace. On peut aussi classer les transformations d'après leurs éléments conservés : Jusqu'à l'avant dernière, chacune de ces classes contient la précédente.
Équation de LangevinLéquation de Langevin' (1908) est une équation stochastique pour le mouvement brownien. Dans l'approche théorique de Langevin, une grosse particule brownienne de masse m, supposée animée à l'instant t d'une vitesse , est soumise à deux forces bien distinctes : une force de frottement fluide du type , où k est une constante positive. Dans le cas d'une particule sphérique de rayon a, cette constante s'écrit explicitement : (loi de Stokes). une force complémentaire, notée , qui synthétise la résultante des chocs aléatoires des molécules de fluide environnantes.
Système de fonctions itéréesvignette|Attracteur de deux similitudes et . En mathématiques, un système de fonctions itérées (SFI ou encore IFS, acronyme du terme anglais Iterated Function System) est un outil pour construire des fractales. Plus précisément, l'attracteur d'un système de fonctions itérées est une forme fractale autosimilaire faite de la réunion de copies d'elle-même, chaque copie étant obtenue en transformant l'une d'elles par une fonction du système. La théorie a été formulée lors d'un séjour à l'université de Princeton par John Hutchinson en 1980.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.