Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
XénonLe xénon est l'élément chimique de numéro atomique 54, de symbole Xe. C'est un gaz noble, inodore et incolore. Dans une lampe à décharge, il émet une lumière bleue. Le xénon est le plus rare et le plus cher des gaz nobles, à l'exception du radon dont tous les isotopes sont radioactifs. Étymologiquement, le nom de « xénon » dérive du mot grec , « étranger ». Ce nom vient du fait que le xénon a été découvert sous forme de « gaz inconnu, étranger » dans le krypton lors des identifications successives des gaz rares (argon, krypton, xénon) à la fin du .
Hyperpolarization (physics)Hyperpolarization is the nuclear spin polarization of a material in a magnetic field far beyond thermal equilibrium conditions determined by the Boltzmann distribution. It can be applied to gases such as 129Xe and 3He, and small molecules where the polarization levels can be enhanced by a factor of 104-105 above thermal equilibrium levels. Hyperpolarized noble gases are typically used in magnetic resonance imaging (MRI) of the lungs. Hyperpolarized small molecules are typically used for in vivo metabolic imaging.
Algorithme de recherche de valeur propreUn problème important en analyse numérique consiste à développer des algorithmes efficaces et stables pour trouver les valeurs propres d'une matrice. Ces algorithmes de recherche de valeurs propres peuvent être étendus pour donner les vecteurs propres associés. Valeur propre, vecteur propre et espace propre Pour une matrice carrée A de taille n × n réelle ou complexe, une valeur propre λ et son vecteur propre généralisé associé v sont un couple vérifiant la relation où v est un vecteur colonne n × 1 non nul, I la matrice identité de taille n × n, k un entier positif.
Laplacien discretEn mathématiques, le laplacien discret est une analogie du laplacien continu adaptée au cas de problèmes discret (graphes, par exemple). Il est notamment employé en analyse numérique, par exemple dans le cadre de la résolution de l'équation de la chaleur par la méthode des différences finies, ou en pour la détection de contours. Soit une fonction réelle de deux variables réelles et et . On définit le laplacien discret de comme la somme des dérivées secondes discrètes selon et selon , soit : L'exemple précédent est décrit dans une grille régulière cartésienne de dimension (plan).
Analyse fonctionnelle (mathématiques)L'analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l'analyse qui étudie les espaces de fonctions. Elle prend ses racines historiques dans l'étude des transformations telles que la transformation de Fourier et dans l'étude des équations différentielles ou intégro-différentielles. Le terme fonctionnelle trouve son origine dans le cadre du calcul des variations, pour désigner des fonctions dont les arguments sont des fonctions.