Catégorie des petites catégoriesEn mathématiques, plus précisément en théorie des catégories, la catégorie des petites catégories, notée Cat, est la catégorie dont les objets sont les petites catégories et dont les morphismes sont les foncteurs entre petites catégories. Cat peut en fait être considérée comme une 2-catégorie, les transformations naturelles servant de 2-morphismes. L'objet initial de Cat est la catégorie vide 0, qui est la catégorie sans objets et sans morphismes. L'objet final est la catégorie finale ou catégorie triviale 1 ayant un seul objet et un seul morphisme.
Trouble de la paroleUn trouble de la parole est un problème de communication lié à la parole. Il s'agit d'un trouble caractérisé par l'impossibilité d'émettre un son articulé et modulé dont l'enchaînement des syllabes constitue des mots compréhensibles. Un trouble de la parole génère donc un trouble du langage. Une personne dans l'incapacité de parler à cause d'un trouble de la parole est désignée comme muette.
Équivalence de catégoriesEn mathématiques, plus précisément en théorie des catégories, une équivalence de catégories est une relation qui établit que deux catégories sont "essentiellement les mêmes". C'est un foncteur entre les deux catégories, qui prend compte formellement du fait que ces catégories relèvent d'une même structure : on dit alors que les catégories sont équivalentes. À la différence de la notion d'isomorphisme de catégories, la notion d'équivalence est moins rigide, plus pratique et plus courante.
OrthophonieL'orthophonie (ortho : « droit », phonè : « son »), ou logopédie (logos : « parole », paideia : « éducation ») en Belgique et en Suisse, est une profession paramédicale, pratiquée par des orthophonistes uniquement avec prescription médicale en France et au Canada, des logopèdes en Belgique et des logopédistes en Suisse, et liée à un champ d'expertises et de pratiques thérapeutiques spécialisées dans l'évaluation et le traitement des troubles de la communication que ce soit à la voix, à la parole et au langa
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Concept (philosophie)En logique, un concept est un contenu de pensée, qui, lorsqu'il est appliqué à un objet, peut former une proposition. En linguistique, le concept représente le signifié, c'est-à-dire le sens du mot, tandis que le mot lui-même constitue son signifiant. Le concept est un terme abstrait qui se distingue donc de la chose désignée par ce concept. Le terme lui-même est introduit au Moyen Âge (conceptus) par Thomas d'Aquin puis Guillaume d'Ockham et les autres philosophes scolastiques .
Theory of categoriesIn ontology, the theory of categories concerns itself with the categories of being: the highest genera or kinds of entities according to Amie Thomasson. To investigate the categories of being, or simply categories, is to determine the most fundamental and the broadest classes of entities. A distinction between such categories, in making the categories or applying them, is called an ontological distinction. Various systems of categories have been proposed, they often include categories for substances, properties, relations, states of affairs or events.
Théorie des catégories supérieuresEn mathématiques, la théorie des catégories supérieures est la partie de la théorie des catégories à un ordre supérieur, ce qui signifie que certaines égalités sont remplacées par des flèches explicites afin de pouvoir étudier explicitement la structure derrière ces égalités. La théorie des catégories supérieures est souvent appliquée en topologie algébrique (en particulier en théorie de l'homotopie ), où l'on étudie les invariants algébriques des espaces, tels que leur ∞-groupoïde fondamental faible.
Catégorie additiveLes catégories additives jouent un rôle essentiel en théorie des catégories. De très nombreuses catégories rencontrées en pratique sont en effet additives. Toute catégorie abélienne (telle que la catégorie des groupes abéliens, ou celle des modules à gauche sur un anneau, ou encore celle des faisceaux de modules sur un espace localement annelé) est additive. Néanmoins, dès qu'on munit d'une topologie des objets appartenant à une catégorie abélienne, et qu'on exige des morphismes qu'ils soient des applications continues, on obtient une catégorie qui n'est généralement plus abélienne, mais qui est souvent additive.
Modulation de largeur d'impulsionLa modulation de largeur d'impulsions (MLI ; en anglais : Pulse Width Modulation, soit PWM), est une technique couramment utilisée pour synthétiser des signaux pseudo analogiques à l'aide de circuits numériques (tout ou rien, 1 ou 0), ou plus généralement à états discrets. Elle sert à générer un signal pseudo analogique à partir d'un environnement numérique ou analogique pour permettre un traitement de ce signal par des composants en commutation (se comportant comme des interrupteurs ouverts ou fermés).