VariogrammeLe est une fonction mathématique utilisée en géostatistique, en particulier pour le krigeage. On parle également de , de par le facteur 1⁄2 de sa définition. L', , ou est l'estimation et l'étude d'un variogramme sur une variable aléatoire. Considérons une variable aléatoire, de la variable d'espace , et supposons-la stationnaire, c'est-à-dire que la moyenne et la variance de sont indépendantes de . On pose la grandeur: Comme est stationnaire, le membre de droite dépend uniquement de la distance entre les points et .
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).
Analyse spatialevignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .
GéostatistiqueLa géostatistique est l'étude des variables régionalisées, à la frontière entre les mathématiques et les sciences de la Terre. Son principal domaine d'utilisation a historiquement été l'estimation des gisements miniers, mais son domaine d'application actuel est beaucoup plus large et tout phénomène spatialisé peut être étudié en utilisant la géostatistique. L'histoire de la géostatistique est liée à l'estimation des gisements exploités dans les mines. Dans les années 1950, un professeur de l'université du Witwatersrand en Afrique du Sud, Danie G.
Lissage (mathématiques)vignette|Exemple de lissage d'une courbe. La courbe bleue joint des données brutes de la température moyenne quotidienne à la station météo de Paris-Montsouris (France) du 1960/01/01 au 1960/02/29. La courbe orange est obtenue avec un lissage exponentiel simple et un facteur alpha = 0.1. Le lissage est une technique qui consiste à réduire les irrégularités et singularités d'une courbe en mathématiques. Cette technique est utilisée en traitement du signal pour atténuer ce qui peut être considéré comme une perturbation ou un bruit de mesure.
KrigeageLe krigeage est, en géostatistique, la méthode d’estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire non biaisé ; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux à deux.
Smoothing splineSmoothing splines are function estimates, , obtained from a set of noisy observations of the target , in order to balance a measure of goodness of fit of to with a derivative based measure of the smoothness of . They provide a means for smoothing noisy data. The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where is a vector quantity. Let be a set of observations, modeled by the relation where the are independent, zero mean random variables (usually assumed to have constant variance).
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Médiane (statistiques)En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.