Noyau (statistiques)Un noyau est une fonction de pondération utilisée dans les techniques d'estimation non-paramétrique. Les noyaux interviennent dans l'estimateur par noyau pour estimer la densité de probabilité d'une variable aléatoire, ou encore dans la régression paramétrique (à noyau) pour estimer des espérances conditionnelles. Pour les séries temporelles, le noyau permet d'estimer la densité spectrale. Un noyau est une fonction positive, intégrable et à valeurs réelles, notée K, qui doit vérifier les deux conditions suivantes : normalisation : symétrie : pour toutes les valeurs de u.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
Cumulative frequency analysisCumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance. Cumulative frequency analysis is performed to obtain insight into how often a certain phenomenon (feature) is below a certain value. This may help in describing or explaining a situation in which the phenomenon is involved, or in planning interventions, for example in flood protection.
Fréquence (statistiques)vignette|Fréquence des traits de kanji En statistique, on appelle fréquence absolue l'effectif des observations d'une classe et fréquence relative ou simplement fréquence, le quotient de cet effectif par celui de la population. L'expression fréquence = valeur n'est jamais ambigüe. Si valeur est un nombre entier positif, il s'agit de la fréquence absolue, c'est-à-dire l'effectif de la classe. Si valeur est un nombre compris entre 0 et 1 ou un pourcentage, il s'agit de la fréquence relative.
Loi GammaEn théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Musique classiquethumb|250px|Une vingtaine de compositeurs de musique classique, parmi les plus importants couvrant la période du .(De gauche à droite, de haut en bas : — Antonio Vivaldi, Jean-Sébastien Bach, Georg Friedrich Haendel, Wolfgang Amadeus Mozart, Ludwig van Beethoven — Gioachino Rossini, Felix Mendelssohn, Frédéric Chopin, Richard Wagner, Giuseppe Verdi — Johann Strauss II, Johannes Brahms, Georges Bizet, Piotr Ilitch Tchaïkovski, Antonín Dvořák — Edvard Grieg, Edward Elgar, Sergueï Rachmaninov, George Gershwin, Aram Khatchatourian.
Multivariate kernel density estimationKernel density estimation is a nonparametric technique for density estimation i.e., estimation of probability density functions, which is one of the fundamental questions in statistics. It can be viewed as a generalisation of histogram density estimation with improved statistical properties. Apart from histograms, other types of density estimators include parametric, spline, wavelet and Fourier series. Kernel density estimators were first introduced in the scientific literature for univariate data in the 1950s and 1960s and subsequently have been widely adopted.
M-estimateurvignette|M-estimateur En statistique, les M-estimateurs constituent une large classe de statistiques obtenues par la minimisation d'une fonction dépendant des données et des paramètres du modèle. Le processus du calcul d'un M-estimateur est appelé M-estimation. De nombreuses méthodes d'estimation statistiques peuvent être considérées comme des M-estimateurs. Dépendant de la fonction à minimiser lors de la M-estimation, les M-estimateurs peuvent permettre d'obtenir des estimateurs plus robustes que les méthodes plus classiques, comme la méthode des moindres carrés.
Loi de GumbelEn théorie des probabilités, la loi de Gumbel (ou distribution de Gumbel), du nom d'Émil Julius Gumbel, est une loi de probabilité continue. La loi de Gumbel est un cas particulier de la loi d'extremum généralisée au même titre que la loi de Weibull ou la loi de Fréchet. La loi de Gumbel est une approximation satisfaisante de la loi du maximum d'un échantillon de variables aléatoires indépendantes toutes de même loi, dès que cette loi appartient, précisément, au domaine d'attraction de la loi de Gumbel.