Total least squaresIn applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix.
Vecteur positionEn géométrie, le vecteur position, ou rayon vecteur, est le vecteur qui sert à indiquer la position d'un point par rapport à un repère. L'origine du vecteur se situe à l'origine fixe du repère et son autre extrémité à la position du point. Si l'on note M cette position et O l'origine, le vecteur position se note . On le note aussi ou . En physique, le vecteur déplacement d'un point matériel ou d'un objet est le vecteur reliant une ancienne position à une nouvelle, donc le vecteur position final moins le vecteur position initial.
Moment d'inertieLe moment d'inertie d'un système physique est une grandeur qui caractérise son inertie vis-à-vis des mouvements de rotation, comme sa masse caractérise son inertie vis-à-vis des mouvements de translation. Il dépend de la valeur et de la répartition des masses au sein du système et a pour dimension (produit d'une masse par le carré d'une longueur) ; il s'exprime donc en dans le Système international d'unités.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Mouvement à la PoinsotEn mécanique du solide, on appelle mouvement à la Poinsot, le mouvement d'un solide autour de son centre de gravité G, le moment des forces extérieures par rapport à G étant nul. Ce mouvement est caractérisé par la conservation du moment cinétique et de l'énergie cinétique de rotation , demi-produit scalaire du moment cinétique et du vecteur de rotation instantanée. Il existe 3 cas : le solide est à symétrie sphérique. Ses moments principaux d'inertie sont égaux : A = B = C.
Motion simulatorA motion simulator or motion platform is a mechanism that creates the feelings of being in a real motion environment. In a simulator, the movement is synchronised with a visual display of the outside world (OTW) scene. Motion platforms can provide movement in all of the six degrees of freedom (DOF) that can be experienced by an object that is free to move, such as an aircraft or spacecraft:. These are the three rotational degrees of freedom (roll, pitch, yaw) and three translational or linear degrees of freedom (surge, heave, sway).
TorseurUn torseur est un outil mathématique utilisé principalement en mécanique du solide indéformable, pour décrire les mouvements des solides et les actions mécaniques qu'ils subissent de la part d'un environnement extérieur. Son nom fait référence à la forme des lignes de champ du champ de vecteurs correspondant, en forme de torsade. Un certain nombre de vecteurs utilisés en mécanique sont des moments : moment d'une force, moment cinétique, moment dynamique.
Centre d'inertieLe centre d'inertie d'un objet, ou centre de masse, est le point de l'espace où l'on applique les effets d'inertie, c'est-à-dire le vecteur variation de quantité de mouvement . Si la masse du système est constante, ce que nous supposerons pour simplifier par la suite, alors , étant l'accélération. C'est aussi le point où l'on applique le vecteur force d'inertie résultant de l'accélération d'entraînement dans le cas d'un référentiel non galiléen.
Mean percentage errorIn statistics, the mean percentage error (MPE) is the computed average of percentage errors by which forecasts of a model differ from actual values of the quantity being forecast. The formula for the mean percentage error is: where at is the actual value of the quantity being forecast, ft is the forecast, and n is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result the formula can be used as a measure of the bias in the forecasts.
Mouvement prograde ou rétrogradevignette|Le satellite (rouge) est rétrograde car il orbite dans la direction opposée à la rotation de sa planète (bleu/noir). vignette|Dans cette animation, le satellite orange décrit un mouvement rétrograde autour de sa planète, contrairement aux trois autres.