Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Effets biologiques et environnementaux des champs électromagnétiquesL'effet des rayonnements non-ionisant sur la santé et sur l'environnement est un sujet de santé publique dans la plupart des pays. Les effets des rayonnements ionisants sur la santé concernent, eux, le domaine de la radiobiologie. Les effets sur l'environnement non vivant concernent le domaine de la compatibilité électromagnétique. Les antennes contenues dans les téléphones portables, notamment les ordiphones, émettent des rayonnements radiofréquences (RF) (« ondes radio » non ionisantes comme les micro-ondes) ; les parties de la tête ou du corps les plus proches de l'antenne peuvent absorber cette énergie et la convertir en chaleur.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Spectre électromagnétiquevignette|redresse=1.5|Diagramme montrant le spectre électromagnétique dans lequel se distinguent plusieurs domaines spectraux en fonction des longueurs d'onde (avec des exemples de tailles), les fréquences correspondantes, et les températures du corps noir dont l'émission est maximum à ces longueurs d'onde. Le spectre électromagnétique est le classement des rayonnements électromagnétiques par fréquence et longueur d'onde dans le vide ou énergie photonique. Le spectre électromagnétique s'étend sans rupture de zéro à l'infini.
Effet Dopplerthumb|Effet Doppler d'une source sonore en mouvement L'effet Doppler, ou effet Doppler-Fizeau, est le décalage de fréquence d’une onde (mécanique, acoustique, électromagnétique ou d'une autre nature) observée entre les mesures à l'émission et à la réception, lorsque la distance entre l'émetteur et le récepteur varie au cours du temps. On désigne de façon générale ce phénomène physique sous le nom d'effet Doppler.
Électrodynamique quantiqueLélectrodynamique quantique (parfois dite relativiste) est une théorie physique ayant pour but de concilier l'électromagnétisme avec la mécanique quantique en utilisant un formalisme lagrangien relativiste. Selon cette théorie, les charges électriques interagissent par échange de photons virtuels. L'étude statique (absence d'évolution au cours du temps) du champ électrique s'appelle électrostatique, celle du champ magnétique magnétostatique. En dynamique, les deux champs deviennent couplés, devenant une seule discipline, l'électro-magnéto-dynamique.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Rayonnement non ionisantthumb|upright=2|Gamme du rayonnement électromagnétique ; Le rayonnement non ionisant est la partie du spectre située sous le trait bleu, à gauche du graphique. Remarque : en réalité la zone de transition entre ces deux types de rayonnements (entre le trait bleu et le trait jaune) n'est pas une limite franche, car différentes molécules et atomes s'ionisent à des énergies différentes. thumb|Symbole d'avertissement des rayonnements non ionisants.
Group contractionIn theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances. For example, the Lie algebra of the 3D rotation group SO(3), [X1, X2] = X3, etc.