Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Repliement de spectrethumb|300px|Ce graphique démontre le repliement du spectre d'un signal sinusoïdal de fréquence f = 0,9, confondu avec un signal de fréquence f = 0,1 lors d'un échantillonnage de période T = 1,0. Le repliement de spectre (aliasing en anglais) est un phénomène qui introduit, dans un signal qui module une fréquence porteuse ou dans un signal échantillonné, des fréquences qui ne devraient pas s'y trouver, lorsque la fréquence porteuse ou la fréquence d'échantillonnage sont inférieures à deux fois la fréquence maximale contenue dans le signal.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Racine de l'erreur quadratique moyenneLa racine de l'erreur quadratique moyenne (REQM) ou racine de l'écart quadratique moyen (en anglais, root-mean-square error ou RMSE, et root-mean-square deviation ou RMSD) est une mesure fréquemment utilisée des différences entre les valeurs (valeurs d'échantillon ou de population) prédites par un modèle ou estimateur et les valeurs observées (ou vraies valeurs). La REQM représente la racine carrée du deuxième moment d'échantillonnage des différences entre les valeurs prédites et les valeurs observées.
Interpolation multivariéeEn analyse numérique, linterpolation multivariée ou linterpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points et l'objectif consiste à évaluer la valeur de la fonction en des points . L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.