Tore maximalEn mathématiques, un tore maximal d'un groupe de Lie G est un sous-groupe de Lie commutatif, connexe et compact de G qui soit maximal pour ces propriétés. Les tores maximaux de G sont uniques à conjugaison près. De manière équivalente, c'est un de G, isomorphe à un tore, et maximal pour cette propriété. Le quotient du normalisateur N(T) d'un tore T par T est le groupe de Weyl associé. Tout groupe de Lie commutatif connexe est isomorphe à un quotient de Rn par un sous-réseau, donc à un tore Tn.
Théorème de Frobenius généraliséEn mathématiques, diverses versions de théorèmes de Frobenius généralisés ont étendu progressivement le théorème de Frobenius de 1877. Ce sont des théorèmes d'algèbre générale qui classifient les algèbres unifères à division de dimension finie sur le corps commutatif R des réels. Moyennant certaines restrictions, il n'y en a que quatre : R lui-même, C (complexes), H (quaternions) et O (octonions). Toutes les algèbres sont ici implicitement supposées unifères, et leur unicité s'entend à isomorphisme près.
Classification des algèbres de CliffordEn mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur R, C ou H (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire où Q est la forme quadratique sur l'espace vectoriel V.
Géométrie non commutativeLa géométrie non commutative, développée par Alain Connes, est une branche des mathématiques, et plus précisément un type de géométrie algébrique distincte de la géométrie algébrique telle qu'on l'entend habituellement (celle développée par Alexandre Grothendieck), car s'intéressant à des objets définis à partir de structures algébriques non commutatives. L'idée principale est qu'un espace au sens de la géométrie usuelle peut être décrit par l'ensemble des fonctions numériques définies sur cet espace.
Loi de réciprocité quadratiqueEn mathématiques, en particulier en théorie des nombres, la loi de réciprocité quadratique, établit des liens entre les nombres premiers ; plus précisément, elle décrit la possibilité d'exprimer un nombre premier comme un carré modulo un autre nombre premier. Conjecturée par Euler et reformulée par Legendre, elle a été correctement démontrée pour la première fois par Gauss en 1801.
Théorème de l'idéal premier dans une algèbre de BooleEn mathématiques, un théorème de l'idéal premier garantit l'existence de certains types de sous-ensembles dans une algèbre. Un exemple courant est le théorème de l'idéal premier dans une algèbre de Boole, qui énonce que tout idéal d'une algèbre de Boole est inclus dans un idéal premier. Une variante de cet énoncé pour filtres sur des ensembles est connue comme le théorème de l'ultrafiltre.
Greatest element and least elementIn mathematics, especially in order theory, the greatest element of a subset of a partially ordered set (poset) is an element of that is greater than every other element of . The term least element is defined dually, that is, it is an element of that is smaller than every other element of Let be a preordered set and let An element is said to be if and if it also satisfies: for all By switching the side of the relation that is on in the above definition, the definition of a least element of is obtained.
Charles HermiteCharles Hermite (1822-1901) est un mathématicien français. Ses travaux concernent surtout la théorie des nombres, les formes quadratiques, les polynômes orthogonaux, les fonctions elliptiques et les équations différentielles. Plusieurs entités mathématiques sont qualifiées d'hermitiennes en son honneur. Il est aussi connu comme l'un des premiers à utiliser les matrices. Il fut le premier à montrer, en 1873, qu'une constante naturelle de l'analyse, en l'occurrence le nombre e, base des logarithmes naturels, est transcendant.