Théorème du codage de canalEn théorie de l'information, le théorème du codage de canal aussi appelé deuxième théorème de Shannon montre qu'il est possible de transmettre des données numériques sur un canal bruité avec un taux d'erreur arbitrairement faible si le débit est inférieur à une certaine limite propre au canal. Ce résultat publié par Claude Shannon en 1948 est fondé sur des travaux antérieurs de Harry Nyquist et Ralph Hartley. La première preuve rigoureuse fut établie par Amiel Feinstein en 1954.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
QuantitéLa quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur d’une collection ou un groupe de choses. C’est habituellement représenté comme un nombre (valeur numérique) d’unité ensemble avec le type de ces unités (si demandé) et un référent définissant la nature de la collection. Les deux parties sont nécessaires.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Fonction quantileEn probabilités, la fonction quantile est une fonction qui définit les quantiles. Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par pour toute valeur de , la notation désignant l’inverse généralisé à gauche de . Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
Taux d'erreurLe taux d'erreur ou B.E.R., abréviation de l'expression anglaise Bit Error Rate, désigne une valeur, relative au taux d'erreur, mesurée à la réception d'une transmission numérique, relative au niveau d'atténuation et/ou de perturbation d'un signal transmis. Ce phénomène survient également lors de l'échantillonnage (numérisation), lors de la lecture et de la sauvegarde des données (CD-R, DVD-R, disque dur, RAM...). Ce taux détermine le nombre d'erreurs apparues entre la modulation et juste après la démodulation du signal.
Grandeur physiqueOn appelle grandeur physique, ou simplement grandeur, toute propriété d'un phénomène physique, d'un corps ou d'une substance, qui peut être mesurée ou calculée, et dont les valeurs possibles s'expriment à l'aide d'un nombre (réel ou complexe) et d'une référence (comme une unité de mesure, une échelle de valeurs ou une échelle ordinale). La précision de la mesure est indiquée par l'incertitude de mesure.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Grandeur sans dimensionUne grandeur sans dimension ou adimensionnelle est une grandeur physique dont la dimension vaut , ce qui revient à dire que tous ses exposants dimensionnels sont nuls : Une grandeur adimensionelle peut être obtenue à partir d'une combinaison de grandeurs dimensionnées, dont l'analyse dimensionnelle permet de vérifier la dimension. Une grandeur adimensionelle peut cependant posséder une unité, comme par exemple les angles dont l'unité est le radian. D'autres exemples de grandeurs adimensionnées sont l'indice de réfraction ou la densité.