Quasi-isomorphismeEn mathématiques, un quasi-isomorphisme est une application induisant un isomorphisme en homologie. Cette définition s'applique aux morphismes de complexes différentiels et notamment aux complexes de chaines ou de cochaines, mais aussi aux applications continues entre espaces topologiques via les différentes théories d'homologie. Toute équivalence d'homotopie est un quasi-isomorphisme mais la réciproque est fausse. En particulier, l'existence d'un quasi-isomorphisme entre deux espaces n'implique pas l'existence d'un quasi-isomorphisme réciproque.
Homologie singulièreEn topologie algébrique, l'homologie singulière est une construction qui permet d'associer à un espace topologique X une suite homologique de groupes abéliens libres ou de modules. Cette association est un invariant topologique non complet, c'est-à-dire que si deux espaces sont homéomorphes alors ils ont mêmes groupes d'homologie singulière en chaque degré mais que la réciproque est fausse. Le théorème de Stokes appliqué à des formes fermées donne des intégrales nulles. Cependant, il se fonde sur une hypothèse cruciale de compacité.
Forme différentielleEn géométrie différentielle, une forme différentielle est la donnée d'un champ d'applications multilinéaires alternées sur les espaces tangents d'une variété différentielle possédant une certaine régularité. Le degré des formes différentielles désigne le degré des applications multilinéaires. La différentielle d'une fonction numérique peut être regardée comme un champ de formes linéaires : c'est le premier exemple de formes différentielles.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
FibrationEn théorie de l'homotopie, une fibration est une application continue entre espaces topologiques satisfaisant une propriété de relèvement des homotopies, qui est satisfaite en général par les projections fibrées. Les fibrations de Serre relèvent les homotopies depuis les CW-complexes tandis que les fibrations de Hurewicz relèvent les homotopies depuis n'importe quel espace topologique.
RétractionEn topologie générale et surtout en topologie algébrique, une rétraction est, intuitivement, un « rétrécissement » d'un espace topologique sur l'un de ses sous-espaces. Ce sous-espace est un rétract par déformation s'il existe une fonction permettant d'effectuer ce « rétrécissement » de façon continue. Soient X un espace topologique et A un sous-espace. Une rétraction de X sur A est une application continue r de X dans A dont la restriction à A est l'application identité de A, c'est-à-dire telle que pour tout point a de A, r(a) = a ; autrement dit, c'est une rétraction de l'application d'inclusion i de A dans X : r ∘ i = Id.
Espace euclidienEn mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
Théorème d'excisionLe théorème d'excision est un théorème en topologie algébrique sur l' donnés un espace topologique X et des sous-espaces A et U tels que U soit aussi un sous-espace de A, le théorème énonce que sous certaines circonstances, on peut extraire («exciser») U des deux autres espaces A et X de telle sorte que les homologies relatives des couples (X, A) et (X \ U, A \ U) soient isomorphes. On l'utilise parfois pour faciliter le calcul de groupes d'homologie singulière (après excision d'un sous-espace bien choisi).
Lie algebra cohomologyIn mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Catégorie de modèlesEn mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.