Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Loi de RayleighEn probabilités et en statistiques, la loi de Rayleigh, est une loi de probabilité à densité. Elle apparaît comme la norme d'un vecteur gaussien bi-dimensionnel dont les coordonnées sont indépendantes, centrées et de même variance. Cette loi de probabilité est baptisée d'après Lord Rayleigh. Typiquement, la distance D à laquelle une particule se trouve de son point de départ, après avoir effectué n pas d'une marche aléatoire symétrique dans le plan, suit approximativement une loi de Rayleigh de paramètre .
Loi géométriqueEn théorie des probabilités et en statistique, la loi géométrique désigne, selon la convention choisie, l'une des deux lois de probabilité suivantes : la loi du nombre X d'épreuves de Bernoulli indépendantes de probabilité de succès p ∈ ]0,1[ (ou q = 1 – p d'échec) nécessaire pour obtenir le premier succès. X est la variable aléatoire donnant le rang du premier succès. Le support de la loi est alors {1, 2, 3, ...}. La loi du nombre Y = X – 1 d'échecs avant le premier succès. Le support de la loi est alors {0, 1, 2, 3, .
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Convergence simpleEn mathématiques, la convergence simple ou ponctuelle est une notion de convergence dans un espace fonctionnel, c’est-à-dire dans un ensemble de fonctions entre deux espaces topologiques. C'est une définition peu exigeante : elle est plus facile à établir que d'autres formes de convergence, notamment la convergence uniforme. Le passage à la limite possède donc moins de propriétés : une suite de fonctions continues peut ainsi converger simplement vers une fonction qui ne l'est pas.
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Loi bêta-binomiale négativeEn théorie des probabilités et en statistique, la loi bêta-binomiale négative est la loi de probabilité discrète d'une variable aléatoire X égale au nombre d'échecs nécessaires pour obtenir n succès dans une suite d'épreuves de Bernoulli où la probabilité p du succès est une variable aléatoire de loi bêta. La loi est alors une loi mélangée. Cette loi a également été appelée la loi inverse Markov-Pólya et la loi de Waring généralisée. Une version avec dérive de cette loi a été appelée la loi bêta-Pascal.
Loi du χ non centréeEn théorie des probabilités et en statistique, la loi du non centrée est une généralisation la loi du χ. Si , sont k variables aléatoires indépendantes de loi normale de moyennes et écart-type respectifs et , alors est une variable aléatoire de loi du non centrée. Cette loi a deux parametres : un entier qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de variables ), et un réel relatif à la moyenne des variables par la formule : On dira que X suit une loi du χ non centrée avec k degrés de liberté et de paramètre λ, on notera La densité de probabilité est donnée par : où est la fonction de Bessel modifiée de première espèce.
Distance correlationIn statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.