Publication

On canonical representations of convex polyhedra

Stefano Picozzi
2002
Conference paper
Abstract

Every convex polyhedron in the Euclidean space RdR^d admits both H-representation and V-representation. When working with convex polyhedra, in particular large-scale ones in high dimensions, it is useful to have a canonical representation that is minimal and unique up to some elementary operations. Such a representation allows one to compare two H-polyhedra or two V-polyhedra efficiently. In this paper, we define such representations that are simple and can be computed in polynomial time. The key ingredients are redundancy removal for linear inequality systems and affine transformations of polyhedra.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.