Startup

Ligentec

Description

Ligentec is a B2B company specializing in manufacturing Photonic Integrated Circuits (PIC) using Silicon Nitride technology. Their PICs offer low loss, high efficiency, and are transparent from visible to mid-IR, enabling applications in communication, Quantum technologies, LiDAR, and Biosensors. With a strategic location near EPFL in Lausanne, Switzerland, Ligentec provides cutting-edge chips globally, supporting industrial revolution 4.0.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Categories (12)
Topics in photonics
Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light.
Quantum computing
A quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.
Topics in inorganic chemistry
Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.
Photonics
Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light.
Theory of computation
In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
Show more
Related concepts (15)
Photonic integrated circuit
A photonic integrated circuit (PIC) or integrated optical circuit is a microchip containing two or more photonic components which form a functioning circuit. This technology detects, generates, transports, and processes light. Photonic integrated circuits utilize photons (or particles of light) as opposed to electrons that are utilized by electronic integrated circuits. The major difference between the two is that a photonic integrated circuit provides functions for information signals imposed on optical wavelengths typically in the visible spectrum or near infrared (850–1650 nm).
Silicon photonics
Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what (by analogy with a similar construction in microelectronics) is known as silicon on insulator (SOI).
Photonics
Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light.
Photonic crystal
A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices (crystal structure) of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.
Silicon nitride
Silicon nitride is a chemical compound of the elements silicon and nitrogen. Si3N4 (Trisilicon tetranitride) is the most thermodynamically stable and commercially important of the silicon nitrides, and the term ′′Silicon nitride′′ commonly refers to this specific composition. It is a white, high-melting-point solid that is relatively chemically inert, being attacked by dilute HF and hot H3PO4. It is very hard (8.5 on the mohs scale). It has a high thermal stability with strong optical nonlinearities for all-optical applications.
Show more
Related courses (21)
PHYS-434: Physics of photonic semiconductor devices
Series of lectures covering the physics of quantum heterostructures, dielectric microcavities and photonic crystal cavities as well as the properties of the main light emitting devices that are light-
MICRO-516: Nanophotonics
Students understand and apply the physics of the interaction of light with semiconductors. They understand the operating mechanism of scaled photonic devices such as photodetectors, LEDs and lasers, a
MICRO-410: Classical and quantum photonic transducers
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
Show more
Related lectures (202)
Quantum Nanostructures: Growth and Fabrication
Covers epitaxy, quantum nanostructures growth, and quantized energy levels computation.
Quantum Nanostructures: Energy Levels and Superlattices
Explores quantized energy levels in quantum wells and the physics of superlattices.
Semiconductor Laser Diodes
Explores electrical injection in semiconductors, transparency, laser oscillations, and edge-emitting laser diode design.
High Q Optical Microcavities
Explores high Q optical microcavities, covering topics such as quality-factor, nonlinear properties, and cavity quantum optomechanics.
Quantum Nanostructures: Entangled Photon Sources
Explores the properties of semiconducting quantum nanostructures, focusing on generating entangled photon pairs for quantum communication.
Show more
Related publications (524)

Silicon nitride electric-field poled microresonator modulator

Camille Sophie Brès, Anton Stroganov, Boris Zabelich, Christian André Clément Lafforgue, Edgars Nitiss

Stoichiometric silicon nitride is a highly regarded platform for its favorable attributes, such as low propagation loss and compatibility with complementary metal-oxide-semiconductor technology, making it a prominent choice for various linear and nonlinear ...
2024

Hybrid silicon photonics for terahertz applications

Ileana-Cristina Benea-Chelmus

This talk will highlight opportunities for terahertz science and technology from nonlinear integrated photonic circuits by exploring waveguides, resonators and terahertz antennas. Their present and future applications in metrology, emission and waveform co ...
Spie-Int Soc Optical Engineering2024

Single-Mode Laser in the Telecom Range by Deterministic Amplification of the Topological Interface Mode

Kirsten Emilie Moselund, Chang Won Lee

Photonic integrated circuits are paving the way for novel on-chip functionalities with diverse applications in communication, computing, and beyond. The integration of on-chip light sources, especially single-mode lasers, is crucial for advancing those pho ...
Washington2024
Show more
Related startups (1)
Miraex
Active in photonic sensing, quantum computing and fiber optic sensors. Miraex specializes in photonic sensing and quantum computing solutions, offering safe and efficient monitoring of critical assets and processes using light-based fiber optic sensors.