Summary
In mathematics, given two groups, (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to (H, ·) is a function h : G → H such that for all u and v in G it holds that where the group operation on the left side of the equation is that of G and on the right side that of H. From this property, one can deduce that h maps the identity element eG of G to the identity element eH of H, and it also maps inverses to inverses in the sense that Hence one can say that h "is compatible with the group structure". Older notations for the homomorphism h(x) may be xh or xh, though this may be confused as an index or a general subscript. In automata theory, sometimes homomorphisms are written to the right of their arguments without parentheses, so that h(x) becomes simply . In areas of mathematics where one considers groups endowed with additional structure, a homomorphism sometimes means a map which respects not only the group structure (as above) but also the extra structure. For example, a homomorphism of topological groups is often required to be continuous. The purpose of defining a group homomorphism is to create functions that preserve the algebraic structure. An equivalent definition of group homomorphism is: The function h : G → H is a group homomorphism if whenever a ∗ b = c we have h(a) ⋅ h(b) = h(c). In other words, the group H in some sense has a similar algebraic structure as G and the homomorphism h preserves that. Monomorphism A group homomorphism that is injective (or, one-to-one); i.e., preserves distinctness. Epimorphism A group homomorphism that is surjective (or, onto); i.e., reaches every point in the codomain. Isomorphism A group homomorphism that is bijective; i.e., injective and surjective. Its inverse is also a group homomorphism. In this case, the groups G and H are called isomorphic; they differ only in the notation of their elements and are identical for all practical purposes. Endomorphism A group homomorphism, h: G → G; the domain and codomain are the same. Also called an endomorphism of G.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.