In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication.
In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules.
Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system.
The term representation of a group is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical object. More formally, a "representation" means a homomorphism from the group to the automorphism group of an object. If the object is a vector space we have a linear representation. Some people use realization for the general notion and reserve the term representation for the special case of linear representations. The bulk of this article describes linear representation theory; see the last section for generalizations.
The representation theory of groups divides into subtheories depending on the kind of group being represented. The various theories are quite different in detail, though some basic definitions and concepts are similar. The most important divisions are:
Finite groups — Group representations are a very important tool in the study of finite groups. They also arise in the applications of finite group theory to crystallography and to geometry. If the field of scalars of the vector space has characteristic p, and if p divides the order of the group, then this is called modular representation theory; this special case has very different properties.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Group representation theory studies the actions of groups on vector spaces. This allows the use of linear algebra to study certain group theoretical questions. In this course the groups in question wi
In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element. Many mathematical structures are groups endowed with other properties. For example, the integers with the addition operation is an infinite group, which is generated by a single element called 1 (these properties characterize the integers in a unique way).
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
In mathematics, a Lie group (pronounced liː ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction).
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...
2024
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
Cyclopentadienyl (Cp) metal complexes and their chiral counterparts (CpX) have enabled the development of challenging C-H activation transformations. While major progresses were made in developing new chiral CpX complexes and exploring their reactivity, th ...