Summary
In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'. The perpendicular bisector of a line segment is a line which meets the segment at its midpoint perpendicularly. The perpendicular bisector of a line segment also has the property that each of its points is equidistant from segment AB's endpoints: (D). The proof follows from and Pythagoras' theorem: Property (D) is usually used for the construction of a perpendicular bisector: In classical geometry, the bisection is a simple compass and straightedge construction, whose possibility depends on the ability to draw arcs of equal radii and different centers: The segment is bisected by drawing intersecting circles of equal radius , whose centers are the endpoints of the segment. The line determined by the points of intersection of the two circles is the perpendicular bisector of the segment. Because the construction of the bisector is done without the knowledge of the segment's midpoint , the construction is used for determining as the intersection of the bisector and the line segment. This construction is in fact used when constructing a line perpendicular to a given line at a given point : drawing a circle whose center is such that it intersects the line in two points , and the perpendicular to be constructed is the one bisecting segment . If are the position vectors of two points , then its midpoint is and vector is a normal vector of the perpendicular line segment bisector. Hence its vector equation is . Inserting and expanding the equation leads to the vector equation (V) With one gets the equation in coordinate form: (C) Or explicitly: (E), where , , and .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (21)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
ME-373: Finite element modelling and simulation
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
Show more
Related lectures (63)
Inclusion Bissectrice
Explores the concept of inclusion bissectrice in stereotomy and the configuration of convex and concave panels.
Elementary Operations in Geometry
Explores elementary operations in geometry, including bisection, proportionality, Thales' theorem, and practical applications.
LIMITATION 1 CÔTÉ: DIÈDRES
Explores 'LIMITATION 1 CÔTÉ' and 'DIÈDRES' in stereotomy using TopSolid 7 software.
Show more
Related publications (33)
Related concepts (38)
Circumcircle
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.
Perimeter
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel/circle (its circumference) describes how far it will roll in one revolution.
Parallelogram
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.
Show more
Related MOOCs (6)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more