In mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields, discovered by the French mathematician Évariste Galois.
A Galois connection can also be defined on preordered sets or classes; this article presents the common case of posets.
The literature contains two closely related notions of "Galois connection". In this article, we will refer to them as (monotone) Galois connections and antitone Galois connections.
A Galois connection is rather weak compared to an order isomorphism between the involved posets, but every Galois connection gives rise to an isomorphism of certain sub-posets, as will be explained below.
The term Galois correspondence is sometimes used to mean a bijective Galois connection; this is simply an order isomorphism (or dual order isomorphism, depending on whether we take monotone or antitone Galois connections).
Let (A, ≤) and (B, ≤) be two partially ordered sets. A monotone Galois connection between these posets consists of two monotone functions: F : A → B and G : B → A, such that for all a in A and b in B, we have
F(a) ≤ b if and only if a ≤ G(b).
In this situation, F is called the lower adjoint of G and G is called the upper adjoint of F. Mnemonically, the upper/lower terminology refers to where the function application appears relative to ≤. The term "adjoint" refers to the fact that monotone Galois connections are special cases of pairs of adjoint functors in as discussed further below. Other terminology encountered here is left adjoint (resp. right adjoint) for the lower (resp. upper) adjoint.
An essential property of a Galois connection is that an upper/lower adjoint of a Galois connection uniquely determines the other:
F(a) is the least element with a ≤ G(), and
G(b) is the largest element with F() ≤ b.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection.
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings.
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
This is an introductory course to combinatorial number theory. The main objective of this course is to learn how to use combinatorial, topological, and analytic methods to solve problems in number the
In this paper, we propose a novel splitting method for finding a zero point of the sum of two monotone operators where one of them is Lipschizian. The weak convergence the method is proved in real Hilbert spaces. Applying the proposed method to composite m ...
2020
,
We propose a variance reduced algorithm for solving monotone variational inequalities. Without assuming strong monotonicity, cocoercivity, or boundedness of the domain, we prove almost sure convergence of the iterates generated by the algorithm to a soluti ...
2021
, ,
Consider the problem of constructing a polar code of block length N for a given transmission channel W. Previous approaches require one to compute the reliability of the N synthetic channels and then use only those that are sufficiently reliable. However, ...