In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk.
The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.
A subset of a real or complex vector space is called a and is said to be , , and if any of the following equivalent conditions is satisfied:
is a convex and balanced set.
for any scalars and if then
for all scalars and if then
for any scalars and if then
for any scalars if then
The smallest convex (respectively, balanced) subset of containing a given set is called the convex hull (respectively, the balanced hull) of that set and is denoted by (respectively, ).
Similarly, the , the , and the of a set is defined to be the smallest disk (with respect to subset inclusion) containing
The disked hull of will be denoted by or and it is equal to each of the following sets:
which is the convex hull of the balanced hull of ; thus,
In general, is possible, even in finite dimensional vector spaces.
the intersection of all disks containing
The intersection of arbitrarily many absolutely convex sets is again absolutely convex; however, unions of absolutely convex sets need not be absolutely convex anymore.
If is a disk in then is absorbing in if and only if
Topological vector space#Properties
If is an absorbing disk in a vector space then there exists an absorbing disk in such that
If is a disk and and are scalars then and
The absolutely convex hull of a bounded set in a locally convex topological vector space is again bounded.
If is a bounded disk in a TVS and if is a sequence in then the partial sums are Cauchy, where for all In particular, if in addition is a sequentially complete subset of then this series converges in to some point of
The convex balanced hull of contains both the convex hull of and the balanced hull of Furthermore, it contains the balanced hull of the convex hull of thus
where the example below shows that this inclusion might be strict.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded. Bounded sets are a natural way to define locally convex polar topologies on the vector spaces in a dual pair, as the polar set of a bounded set is an absolutely convex and absorbing set. The concept was first introduced by John von Neumann and Andrey Kolmogorov in 1935.
In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space. If is a subset of a real or complex vector space then the or of is defined to be the function valued in the extended real numbers, defined by where the infimum of the empty set is defined to be positive infinity (which is a real number so that would then be real-valued).
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field with an absolute value function ) is a set such that for all scalars satisfying The balanced hull or balanced envelope of a set is the smallest balanced set containing The balanced core of a set is the largest balanced set contained in Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neig
We study the limit behaviour of sequences of non-convex, vectorial, random integral functionals, defined on W1,1, whose integrands are ergodic and satisfy degenerate linear growth conditions. The latter involve suitable random, scale-dependent weight-funct ...
2023
,
We propose a method for sensor array self-localization using a set of sources at unknown locations. The sources produce signals whose times of arrival are registered at the sensors. We look at the general case where neither the emission times of the source ...
The paper presents a robust data-driven controller synthesis method for generalised multi-input multioutput (MIMO) systems. Using the frequency response of a linear time-invariant (LTI) MIMO system and characterising perturbations through Integral Quadrati ...
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).