Pearson's chi-squared test () is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates, likelihood ratio, portmanteau test in time series, etc.) – statistical procedures whose results are evaluated by reference to the chi-squared distribution. Its properties were first investigated by Karl Pearson in 1900. In contexts where it is important to improve a distinction between the test statistic and its distribution, names similar to Pearson χ-squared test or statistic are used. It tests a null hypothesis stating that the frequency distribution of certain events observed in a sample is consistent with a particular theoretical distribution. The events considered must be mutually exclusive and have total probability 1. A common case for this is where the events each cover an outcome of a categorical variable. A simple example is the hypothesis that an ordinary six-sided is "fair" (i. e., all six outcomes are equally likely to occur.) Pearson's chi-squared test is used to assess three types of comparison: goodness of fit, homogeneity, and independence. A test of goodness of fit establishes whether an observed frequency distribution differs from a theoretical distribution. A test of homogeneity compares the distribution of counts for two or more groups using the same categorical variable (e.g. choice of activity—college, military, employment, travel—of graduates of a high school reported a year after graduation, sorted by graduation year, to see if number of graduates choosing a given activity has changed from class to class, or from decade to decade). A test of independence assesses whether observations consisting of measures on two variables, expressed in a contingency table, are independent of each other (e.g. polling responses from people of different nationalities to see if one's nationality is related to the response).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (22)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
FIN-403: Econometrics
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
Afficher plus
Séances de cours associées (54)
Réseaux neuronaux : formation et activation
Explore les réseaux neuronaux, les fonctions d'activation, la rétropropagation et l'implémentation de PyTorch.
Test bidirectionnel ANOVA et Chi-square
Explore l'ANOVA bidirectionnelle, le test du chi carré, la comparaison de modèles et la transformation variable pour l'analyse statistique.
Estimation du débit maximal avec la distribution LP3
Couvre l'approche du facteur de fréquence et la distribution log-Pearson de type III pour estimer le débit maximal.
Afficher plus
Publications associées (59)

Flux correlators and semiclassics

Riccardo Rattazzi, Alexander Monin, Eren Clément Firat, Matthew Thomas Walters

We consider correlators for the flux of energy and charge in the background of operators with large global U(1) charge in conformal field theory (CFT). It has recently been shown that the corresponding Euclidean correlators generically admit a semiclassica ...
Springer2024

Near Collision Attack Against Grain V1

Daniel Patrick Collins, Subhadeep Banik, Willi Meier

A near collision attack against the Grain v1 stream cipher was proposed by Zhang et al. in Eurocrypt 18. The attack uses the fact that two internal states of the stream cipher with very low hamming distance between them, produce similar keystream sequences ...
2023
Afficher plus
Concepts associés (19)
Karl Pearson
Karl Pearson (–), mathématicien britannique, est un des fondateurs de la statistique moderne appliquée à la biomédecine (biométrie et biostatistique). Il est principalement connu pour avoir développé le coefficient de corrélation et le test du χ2. Il est aussi l'un des fondateurs de la revue Biometrika, dont il a été rédacteur en chef pendant 36 ans et qu'il a hissée au rang des meilleures revues de statistique mathématique. Né le de Fanny Smith et William Pearson, tous deux issus de familles quakers du Yorkshire, Karl Pearson a deux frères et une sœur.
Test du χ²
En statistique, le test du khi carré, aussi dit du khi-deux, d’après sa désignation symbolique , est un test statistique où la statistique de test suit une loi du sous l'hypothèse nulle. Par exemple, il permet de tester l'adéquation d'une série de données à une famille de lois de probabilité ou de tester l'indépendance entre deux variables aléatoires. Ce test a été proposé par le statisticien Karl Pearson en 1900.
Valeur p
vignette|redresse=1.5|Illustration de la valeur-p. X désigne la loi de probabilité de la statistique de test et z la valeur calculée de la statistique de test. Dans un test statistique, la valeur-p (en anglais p-value pour probability value), parfois aussi appelée p-valeur, est la probabilité pour un modèle statistique donné sous l'hypothèse nulle d'obtenir une valeur au moins aussi extrême que celle observée. L'usage de la valeur-p est courant dans de nombreux domaines de recherche comme la physique, la psychologie, l'économie et les sciences de la vie.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.